127k views
2 votes
Help needed to solve this ​

Help needed to solve this ​-example-1
User Piccolo
by
6.2k points

1 Answer

7 votes

Given:

The expression is:


(1)/(a+b)+(2a)/(a^2+b^2)+(4a^7+4a^3b^4)/(b^8-a^8)

To find:

The simplified form of the given expression

Solution:

Formula used:


x^2-y^2=(x-y)(x+y)

We have,


(1)/(a+b)+(2a)/(a^2+b^2)+(4a^7+4a^3b^4)/(b^8-a^8)

It can be written as:


=(1)/(a+b)+(2a)/(a^2+b^2)+(4a^3(a^4+b^4))/((b^4)^2-(a^4)^2)


=(1)/(a+b)+(2a)/(a^2+b^2)+(4a^3(a^4+b^4))/((b^4-a^4)(b^4+a^4))


=(1)/(a+b)+(2a)/(a^2+b^2)+(4a^3)/((b^2-a^2)(b^2+a^2))


=(1)/(a+b)+(2a)/(a^2+b^2)+(4a^3)/((b-a)(b+a)(b^2+a^2))

Taking LCM, we get


=(1(b-a)(b^2+a^2)+2a(b-a)(b+a)+4a^3)/((b-a)(b+a)(b^2+a^2))


=(b^3+a^2b-ab^2-a^3+2a(b^2-a^2)+4a^3)/((b-a)(b+a)(b^2+a^2))


=(b^3+a^2b-ab^2-a^3+2ab^2-2a^3+4a^3)/((b-a)(b+a)(b^2+a^2))


=(b^3+a^2b+ab^2+a^3)/((b-a)(b+a)(b^2+a^2))

Using the grouping method factories the numerator.


=(b(b^2+a^2)+a(b^2+a^2))/((b-a)(b+a)(b^2+a^2))


=((b+a)(b^2+a^2))/((b-a)(b+a)(b^2+a^2))

Cancel out the common factors.


=(1)/(b-a)

Therefore, the value of the given expression is
(1)/(b-a).