Answer:
a) 48.4%
b) 51.6%
c) 12.3%
d) i) 93.0% ii) 3.0%
Explanation:
a)
P(fp) = probability of false positive result
P(fp) = 0.07
P(fp = 0) = (1 - 0.07)¹⁰
P(fp = 0) = 0.4839... ⇒ 48.4%
b)
P(fp = 1) = 1 - 0.4839...
P(fp = 1) = 0.516... ⇒ 51.6%
c)
P(fp = 2) = 10C2(0.07)²(0.93)⁸
P(fp = 2) = 0.123... ⇒ 12.3%
d)
P(fn) = probability of false negative
P(b) = probability a randomly selected woman has breast cancer
P(fn) = 0.03
P(b) = 0.0003
If she has a positive test, it is either a true positive, meaning she actually has breast cancer, or a false positive, meaning she doesn't;
If P(fp) = 0.07, then the probability of a true positive is 0.93 or 93%
ii)
If she has a negative test, a true negative means she doesn't have breast cancer, and a false negative means she does have breast cancer;
The probability of a false negative is 0.03 or 3%
(I'm not entirely sure about part d, but I've answered as I've understood it according to my logic, they seem to be somewhat trick questions unless I've incorrectly understood the questions)