221k views
4 votes
In a 0.730 M solution, a weak acid is 12.5% dissociated. Calculate Ka of the acid.

User Hofi
by
3.2k points

1 Answer

5 votes

Answer:

Approximately
1.30 * 10^(-2), assuming that this acid is monoprotic.

Step-by-step explanation:

Assume that this acid is monoprotic. Let
\rm HA denote this acid.


\rm HA \rightleftharpoons H^(+) + A^(-).

Initial concentration of
\rm HA without any dissociation:


[{\rm HA}] = 0.730\; \rm mol \cdot L^(-1).

After
12.5\% of that was dissociated, the concentration of both
\rm H^(+) and
\rm A^(-) (conjugate base of this acid) would become:


12.5\% * 0.730\; \rm mol \cdot L^(-1) = 0.09125\; \rm mol \cdot L^(-1).

Concentration of
\rm HA in the solution after dissociation:


(1 - 12.5\%) * 0.730\; \rm mol \cdot L^(-1) = 0.63875\; \rm mol\cdot L^(-1).

Let
[{\rm HA}],
[{\rm H}^(+)], and
[{\rm A}^(-)] denote the concentration (in
\rm mol \cdot L^(-1) or
\rm M) of the corresponding species at equilibrium. Calculate the acid dissociation constant
K_(\rm a) for
\rm HA, under the assumption that this acid is monoprotic:


\begin{aligned}K_(\rm a) &= \frac{[{\rm H}^(+)] \cdot [{\rm A}^(-)]}{[{\rm HA}]} \\ &= ((0.09125\; \rm mol \cdot L^(-1)) * (0.09125\; \rm mol \cdot L^(-1)))/(0.63875\; \rm mol \cdot L^(-1))\\[0.5em]&\approx 1.30 * 10^(-2) \end{aligned}.

User Impostor
by
3.7k points