![\huge\bold{Given :}](https://img.qammunity.org/2022/formulas/mathematics/college/gj9wcs8fdzrt2n388jjti7i1n7l36q6c68.png)
Angle CBA = 60°
Angle BAC = 40°
Angle BCA =
![x](https://img.qammunity.org/2022/formulas/mathematics/high-school/a9sw50msm0inoav7spou76spw8zhpe27w2.png)
![\huge\bold{To\:find :}](https://img.qammunity.org/2022/formulas/mathematics/college/gt95ydfiq4rolf5y187gbpxt3epevquaah.png)
The measure of angle
.
![\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab3cr96jhmwhpbs7gmbhd859hlno5qbu4k.png)
![\implies {\blue {\boxed {\boxed {\purple {\sf {x\:=\:80°}}}}}}](https://img.qammunity.org/2022/formulas/history/college/k8wsnat1ugzyuuiem5ber1yp96dvp6x93p.png)
![\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/college/smsuei5aad1btuofe1gnk5qrknj5lf3aot.png)
We know that,
![\sf\pink{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}](https://img.qammunity.org/2022/formulas/mathematics/college/7zdb35f60gj33v3x5uwjogyympaqu5ijrl.png)
➪ ∠ CBA + ∠ BAC + ∠ BCA = 180°
➪ 60° + 40° +
= 180°
➪ 100° +
= 180°
➪
= 180° - 100°
➪
= 80°
Therefore, the measure of angle
is 80°.
Now, the three angles of the triangle are 60°, 40° and 80° respectively.
![\large\mathfrak{{\pmb{\underline{\blue{To\:verify}}{\blue{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/college/icivz3gc9eg4k0a1y14ty5ni7vwvcxfuwj.png)
∠ CBA + ∠ BAC + ∠ BCA = 180°
✒ 60° + 40° + 80° = 180°
✒ 180° = 180°
✒ L. H. S. = R. H. S.
![\boxed{Hence\:verified.}](https://img.qammunity.org/2022/formulas/mathematics/college/bugcgzubz7hdgwwapk4d9dwwkgcfnq7g9k.png)
![\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}](https://img.qammunity.org/2022/formulas/mathematics/college/a6tk18qdbxzt1k1wvfyjxs9n5x0medjtps.png)