97.6k views
3 votes
In the figure below, what is the value of xº?

68
100°

A. 800
B. 689
C. 32°
D. 180°

In the figure below, what is the value of xº? 68 100° A. 800 B. 689 C. 32° D. 180°-example-1
User Razzer
by
4.9k points

2 Answers

5 votes


\huge\bold{Given :}

Angle AOB = 100°

Angle OBC = 68°

Angle BCO =
x°


\huge\bold{To\:find :}

The value of
x°.


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\implies {\blue {\boxed {\boxed {\purple {\sf {C.\:x°\:=\:32°}}}}}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

An exterior angle of a triangle is equal to sum of two opposite interior angles.

And so we have,

➪ ∠ AOB = ∠ OBC + ∠ BCO

➪ 100° = 68° +
x°


x° = 100° - 68°


x° = 32°

Therefore, the value of
x° is 32°.


\large\mathfrak{{\pmb{\underline{\blue{To\:verify}}{\blue{:}}}}}

∠ AOB = ∠ OBC + ∠ BCO

✒ 100° = 68° + 32°

✒ 180° = 100°

✒ L. H. S. = R. H. S.


\boxed{Hence\:verified.}

(Note: Kindly refer to the attached file.)


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}

In the figure below, what is the value of xº? 68 100° A. 800 B. 689 C. 32° D. 180°-example-1
User MrHunter
by
4.2k points
5 votes

Answer:

x = 32

Explanation:

The exterior angle of a triangle is equal to the sum of the opposite interior angles

100 = 68+x

Subtract 68 from each side

100 -68 = x

32 =x

User Graham Ambrose
by
4.8k points