Answer:
r = 42,32 ft
h = 84.8 ft
Step-by-step explanation:
We are going to apply Lagrange multipliers method
The greatest space means maximum volume
V(cage) = Vol. of the cylinder + volume of the hemisphere
V(cylinder ) = π*r²*h
V(sphere) = (4/3)*π*r² ⇒ V(hemisphere) = (2/3)*π*r³
V(cage) = π*r²*h + (2/3)*π*r³
Associated costs:
Costs = cost of cylinder + cost of hemisphere
Area of the cylinder = Lateral area ( no bottom no top)
Area of the cylinder = 2*π*r*h
Area of hemisphere = 2*π*r²
A(r,h) = 2*π*r*h + 2*π*r²
C(r , h ) = 10* 2*π*r*h + 20* 2*π*r² C(r , h ) = 20*π*r*h + 40*π*r²
4500 = 20*π*r*h + 40*π*r²
20*π*r*h + 40*π*r² - 4500 = 0 20*π*r*h + 40*π*r² - 4500 = g(r,h)
V(cage) = π*r²*h + (2/3)*π*r³
δV/δr = 2*r*π*h + 2*π*r² δg(r,h)/δr = 20*π*h + 80*π*r
δV/δh = π*r² δg(r,h)/δh = 20*π*r
δV/δr = λ* δg(r,h)/δr
2*r*π*h + 2*π*r² = λ* 20*π*h + 80*π*r
2*r*π* ( h + r ) = 20*π* λ* ( h + 4*r)
r* ( h + r ) = 10*λ* ( h + 4*r) (1)
δV/δh = λ* δg(r,h)/δh
π*r² = 20*λ*π*r r = 20*λ (2)
20*π*r*h + 40*π*r² - 4500 = 0 (3)
We need to sole the system of equation 1 ; 2 ; 3
r = 20*λ plugging that value in equation 1
20*λ ( h + 20*λ ) = 10*λ* ( h + 4*r)
2( h + 20*λ ) = ( h + 4*20*λ)
2*h + 40*λ = h + 80*λ
h = 40*λ
20*π*r*h + 40*π*r² - 4500 = 0
20*π*20*λ*40*λ + 40*π+400λ² - 4500 = 0
16000*π*λ² + 16000*π*λ² = 4500
32000*π*λ² = 4500
320*π*λ² = 4500
λ² = 4500/1004,8 λ² = 4.48 λ = 2.12
Then
r = 20* λ r = 42,32 ft
h = 40* λ h = 84.8 ft