192k views
0 votes
Rewrite the expression in the form z^n

Rewrite the expression in the form z^n-example-1
User Kauedg
by
4.9k points

1 Answer

6 votes

Answer:


z^{ (1)/(3)

Explanation:


\sqrt{\frac{z}{z^{(1)/(3)} } } = \sqrt{z * z^{-(1)/(3)}
[ \ (a)/(a^x) = a \cdot a^(-x) \ ]


= \sqrt {z^{(2)/(3)}}\\\\
[ \ a^x \cdot a^y = a^( x+ y) \ ]


= (z^{(2)/(3)})^{ (1)/(2)}
[ \ √(x^y) = (x^(y)) ^{(1)/(2)} \ ]


= z^ {(1)/(3)}
[ \ (a^x)^y = a^(xy) \ ]

User Jagrut Sharma
by
4.6k points