195k views
5 votes
Determine (a) the principal stresses and (b) the maximum in-plane shear stress and average normal stress at the point. Specify the orientation of the element in each case. 60 45 30

User Qnox
by
5.0k points

1 Answer

4 votes

Answer:

a) 53 MPa, 14.87 degree

b) 60.5 MPa

Average shear = -7.5 MPa

Step-by-step explanation:

Given

A = 45

B = -60

C = 30

a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)

P1 = 53 MPa

Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)

Substituting the given values, we get -

P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)

P1 = -68 MPa

Tan 2a = C/{(A-B)/2}

Tan 2a = 30/(45+60)/2

a = 14.87 degree

Principal stress

p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa

b) Shear stress in plane

Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa

Average = (45-(-60))/2 = -7.5 MPa

User Vinczemarton
by
5.7k points