55.6k views
3 votes
Find x

x³ + 3x - 14 = 0

x³ + x² - x² - x + 4x + 4 = 18
x²(x + 1) - x(x + 1) + 4(x + 1) = 18
(x + 1)(x² - x + 4) = 18
x² - x + 4 = 18/(x + 1)
x² - x + 4 - 6 = 18/(x + 1) - 6
x² - x - 2 = 18/(x + 1) - 6
(x - 2)(x + 1) = (18 - 6(x + 1))/(x + 1)
(x - 2)(x + 1) = (18 - 6x - 6)/(x + 1)
(x - 2)(x + 1) = (12 - 6x)/(x + 1)
(x - 2)(x + 1) = (-6(x - 2))/(x + 1)
x + 1 = (-6(x - 2))/(x + 1)(x - 2)
x + 1 = -6/(x + 1)
(x + 1)² = -6
x² + 2x + 8 = 0
x = (-b +- √(b² - 4ac))/2a
x = (-2 +- √(4 - 32))/2
x = (-2 +- √(-28)/2
x = (-2 +- i√28)/2​

Something's wrong.​

1 Answer

3 votes


\implies {\blue {\boxed {\boxed {\purple {\sf { \: x = - 1 \: + \: i √(6) \:(or) \: \: x = - 1 \: -\: i √(6) }}}}}}

And


\implies {\blue {\boxed {\boxed {\purple {\sf {x\:=\:2}}}}}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}


\: {x}^(3) + 3x - 14 = 0


\: {x}^(2) (x + 1) - x(x + 1) + 4(x + 1) = 18


\: (x + 1)( {x}^(2) - x + 4) = 18


\: {x}^(2) - x + 4 = (18)/((x + 1))


\: {x}^(2) - x + 4 - 6 = (18)/((x + 1)) - 6


\: (x - 2)(x + 1) = (18 - 6(x + 1))/((x + 1))


\: (x - 2)(x + 1) = (18 - 6x - 6)/((x + 1))


\: (x - 2)(x + 1) = (12 - 6x)/((x + 1))


\: (x - 2)(x + 1) = ( - 6(x - 2))/((x + 1))


\: (x + 1 )² = ( - 6(x - 2))/((x + 1)(x - 2))


\: (x + 1)² = ( - 6)/((x + 1))


\sf\pink{Error\:corrected\:here. }


\: {x}^(2) + 2x + 1 = - 6


\: {x}^(2) + 2x + 7 = 0

By quadratic formula, we have


\: x = \frac{ - b± \sqrt{ {b}^(2) - 4ac} }{2a}


\: x = \frac{ - 2± \sqrt{ {2}^(2) - 4.1.7} }{2 * 1}


x = ( - 2± √( - 24) )/(2 )


\: x = ( - 2± √( - 1 * 4 * 6) )/(2)


\: x = ( - 2± √( - 1) * √(4) * √(6) )/(2)


\: x = ( - 2 \: ± \: i * 2 * √(6) )/(2)


\: x = ( - 2 \: ± \:i \: 2 √(6) )/(2)


\: x = ( 2 \: ( - 1 \: ± \: i \: √(6)) )/(2)


\: x = - 1 \: ± \: i √(6)

Therefore, the two values of
x are (
\: - 1 \: + \: i √(6)) and (
\: - 1 \: -\: i √(6)).

Let us look at another method.


x³ + 3
x - 14 = 0


x³ + 3
x = 14


x (
x² + 3 ) = 14

Factors of 14 = 1, 2, 7 and 14.

a) Substituting
x\:=\:1, we have

➼ 1 ( 1 + 3 ) ≠ 14

➼ 1 x 4 ≠ 14


\boxed{ 4\: ≠ \:14 }

b) Substituting
x\:=\:2, we have

➼ 2 ( 2² + 3 ) = 14

➼ 2 ( 4 + 3 ) = 14

➼ 2 x 7 = 14


\boxed{ 14 \:= \:14 }

c) Substituting
x\:=\:7, we have

➼ 7 ( 7² + 3 ) ≠ 14

➼ 7 ( 49 + 3 ) ≠ 14

➼ 7 x 52 ≠ 14


\boxed{ 364\: ≠ \:14 }

d) Substituting
x\:=\:14, we have

➼ 14 ( 14² + 3 ) ≠ 14

➼ 14 x 199 ≠ 14


\boxed{ 2786\: ≠ \:14 }

Hence, our only real solution is 2.


\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{❦}}}}}

User Stephen Nguyen
by
4.7k points