Answer:
The standard error for the new sample size will be of 33.75.
Explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Standard error as 67.5 for samples of a particular size.
We have that
, that is, the standard error is inversely proportional to the square root of the sample size, so if you quadruple (4x) the sample size, the standard error will be divided by half. So
67.5/2 = 33.75
The standard error for the new sample size will be of 33.75.