Answer:
![\displaystyle \int\limits^0_\infty {cos(x)} \, dx = sin(\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/w1srk5xjr7i5u3lrpgd1vq15n56mldwraf.png)
General Formulas and Concepts:
Pre-Calculus
Calculus
- Limits
- Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_(x \to c) x = c](https://img.qammunity.org/2022/formulas/engineering/college/w51ix7fe7u1hi8clvsvlv9mb2bo57ewkjo.png)
- Integrals
- Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2022/formulas/mathematics/college/q5am2gy1b61evzpfs9m2cpql6uqpdre726.png)
- Trig Integration
- Improper Integrals
Explanation:
Step 1: Define
Identify
![\displaystyle \int\limits^0_\infty {cos(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/7y91dq470vt8razulleux0e2c0vvylnpwv.png)
Step 2: Integrate
- [Improper Integral] Rewrite:
![\displaystyle \lim_(a \to \infty) \int\limits^0_a {cos(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/wdyy1lkjt9s60sum7dac6p4wxy2d8d3455.png)
- [Integral] Trig Integration:
![\displaystyle \lim_(a \to \infty) sin(x) \bigg| \limits^0_a](https://img.qammunity.org/2022/formulas/mathematics/college/ujbynp12pglqi0329j0a2l6ephfzzxn9we.png)
- [Integral] Evaluate [Integration Rule - FTC 1]:
![\displaystyle \lim_(a \to \infty) sin(0) - sin(a)](https://img.qammunity.org/2022/formulas/mathematics/college/2tkmtn4s9ldzxevewdfksolw08ak4d29za.png)
- Evaluate trig:
![\displaystyle \lim_(a \to \infty) -sin(a)](https://img.qammunity.org/2022/formulas/mathematics/college/9yyf3xcah0iuj7n4ffgkxops40q4dc74lt.png)
- Evaluate limit [Limit Rule - Variable Direct Substitution]:
![\displaystyle -sin(\infty)](https://img.qammunity.org/2022/formulas/mathematics/college/e4iu6vdjalmtr73bz6l7rju5pr5udhbqcn.png)
Since we are dealing with infinity of functions, we can do a numerous amount of things:
- Since -sin(x) is a shift from the parent graph sin(x), we can say that -sin(∞) = sin(∞) since sin(x) is an oscillating graph. The values of -sin(x) already have values in sin(x).
- Since sin(x) is an oscillating graph, we can also say that the integral actually equates to undefined, since it will never reach 1 certain value.
∴
![\displaystyle \int\limits^0_\infty {cos(x)} \, dx = sin(\infty) \ or \ \text{unde}\text{fined}](https://img.qammunity.org/2022/formulas/mathematics/college/tpyfy6gnp1uzaqhw6wedd9vlohqa1sae6v.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Improper Integrals
Book: College Calculus 10e