Answer:
The right solution is "4.8° east of north".
Step-by-step explanation:
Given:
Distance,
= 500 km
Speed,
![\vec{v}=120 \ m/s](https://img.qammunity.org/2022/formulas/physics/college/uc1r8ih8it9vs3d4ys0qnabueea6zzlopp.png)
Wind (towards west),
![v_0=10 \ m/s](https://img.qammunity.org/2022/formulas/physics/college/8v8ej7tn77stk0pweuu18it91b3c9pb6y7.png)
According to the question, we get
The angle will be:
⇒
![\Theta=Cos^(-1)((v_0)/(v_1) )](https://img.qammunity.org/2022/formulas/physics/college/d3twhv235tui6fssrm5xbgrp85wgixfonz.png)
![=Cos^(-1)((10)/(120) )](https://img.qammunity.org/2022/formulas/physics/college/4dpdoyzy5frexqru1sekgpt5eytbvacl3c.png)
(north of east)
hence,
The direction must be:
⇒
![\Theta'=90-85.21](https://img.qammunity.org/2022/formulas/physics/college/lzklwecsatgscb5ww4ktmvxmka7hw9w78q.png)
![=4.79^(\circ)](https://img.qammunity.org/2022/formulas/physics/college/ganl6q3fwaamt9h37n9bdga2l7xjqmvuqz.png)
or,
(east of north)