Answer:
x = 4
x = - 4
Explanation:
Method 1: Quadratic Formula
Ignore the A before the ±, it wouldn't let me type it correctly.
![x=\frac{-b±\sqrt{b^(2) -4ac} }{2a}](https://img.qammunity.org/2022/formulas/mathematics/college/ogjxx9fosk71fldcl8wn3zgapej9fxfu54.png)
x² - 16 = 0
a = 1
b = 0
c = - 16
![x=\frac{-(0)±\sqrt{0^(2) -4((1)(-16))} }{2(1)}](https://img.qammunity.org/2022/formulas/mathematics/college/lfh65jydb9q7zagzl7w95uz2hkkz4vudzp.png)
![x=(0±√(0 -4((1)(-16))) )/(2(1))](https://img.qammunity.org/2022/formulas/mathematics/college/83q5ebp4ef06i9vmyf6pilj5zawf2ggjk8.png)
![x=(0±√(0 +64) )/(2(1))](https://img.qammunity.org/2022/formulas/mathematics/college/liqlrjf28itcfy9mq29pojwf8rx91cjyk9.png)
![x=(0±√(64) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/kf9p0p3zlp7v2owhev9wt08d48uk64ck05.png)
![x=(0±8 )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/k9zzjibc62prni3pawvlm6igfnntrm24x0.png)
Two separate equations
One must have a + (positive) and the other will have a - (negative).
![x=(0+8 )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/5btbwyl8pj1b52lon3k5grb48of8x17h12.png)
![x=(8 )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/itjt24kzuv0qlwe7onjhdd7m3wujv2agos.png)
x = 8 ÷ 2
x = 4
![x=(-8 )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/ox5fwj3v1vfrzexcoomzxz85fl0ndmu80w.png)
x = - 8 ÷ 2
x = - 4
Method 2: Factoring
x² - 16 = 0
(x - 4)(x + 4) = 0
Two separate equations
x - 4 = 0
x + 4 = 0
x - 4 = 0
x - 4 + 4 = 0 + 4
x = 4
x + 4 = 0
x + 4 - 4 = 0 - 4
x = - 4