31.4k views
1 vote
Find the surface area and volume of the composite figure. Use 3.14 for π and round to the nearest tenth if needed.

Please show step by step, I'm really struggling with this.

Find the surface area and volume of the composite figure. Use 3.14 for π and round-example-1
User Arkelis
by
4.3k points

1 Answer

3 votes


\huge \mathrm {➢ \: \: \: \: Answer }

The above figure consists of three different shapes, that is :

  • A hemisphere
  • A Cylinder
  • A Cone

Let's solve for surface area of whole figure :

1. Curved surface area of hemisphere : -

  • radius (r) = 4 m


\large \boxed{ \boxed{2\pi {r }^(2) }}


➢ \: \: 2 * 3.14 * 4 * 4


➢ \: \: 100.48 \: m {}^(2)

2. lateral surface area of Cylinder : -

  • radius (r) = 4 m
  • height (h) = 10 m


\large \boxed {\boxed{2\pi rh}}


➢ \: \: 2 * 3.14 * 4 * 10


➢ \: \: 251.2 \: { m}^(2)

3. curved surface area of cone :

  • radius (r) = 4 m
  • height of cone (h') = 3 m.


slant \: height = \sqrt{4 {}^(2) + 3 {}^(2) }

(by Pythagoras theorem)


\large \boxed { \boxed{c.s.a = \pi rl}}


➢ \: \: 3.14 * 4 * 5


62.8 \: m {}^(2)

Surface area of the figure :


➢ \: \: 100.48 + 251.2 + 62.8


➢ \: \: 414.48 \: \: m {}^(2)


➢ \: \: 414.5 \: m {}^(2) \: \: \: (approx)

Now, let's solve for volume :

Volume of given figure will be combined volume of the all three shapes,

1. Volume of hemisphere :


\boxed{ \boxed{(2)/(3) \pi {r}^(3) }}


➢ \: \: (2)/(3) * 3.14 * 4 * 4 * 4


➢ \: \: 133.97 \: \: { m}^(3)

2. Volume of Cylinder :


\large\boxed{ \boxed{ \pi{r}^(2)h }}


➢ \: \: 3.14 * 4 * 4 * 10


➢ \: \: 502.4 \: m {}^(3)

3. Volume of cone :

  • height of cone (h') = 3 m


\large \boxed {\boxed{ (1)/(3) \pi {r}^(2)h' }}


➢ \: \: (1)/( 3) * 3.14 * 4 * 4 * 3


➢ \: \: 50.24 \: {m}^(3)

The total volume of the given figure :


➢ \: \: 133.97 + 502.4 + 50.24


➢ \: \: 686.61 \: {m}^(3)

or


➢ \: \: 686.6 \: \: m {}^(3) \: \: \: (approx)


\mathrm{✌TeeNForeveR✌}

User Lewis Taylor
by
5.2k points