73.1k views
0 votes
Solve using quadratic formula for 2x^(2)-10x+5=0

User Pawelzieba
by
4.0k points

1 Answer

3 votes

Answer:


x=(5+√(15))/(2),\:x=(5-√(15))/(2)

Explanation:


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=2,\:b=-10,\:c=5


x_(1,\:2)=(-\left(-10\right)\pm √(\left(-10\right)^2-4\cdot \:2\cdot \:5))/(2\cdot \:2)


√(\left(-10\right)^2-4\cdot \:2\cdot \:5)

Apply exponent rule: (-a)^n=a^n, if n is even


\left(-10\right)^2=10^2


=√(10^2-4\cdot \:2\cdot \:5)


\mathrm{Multiply\:the\:numbers:}\:4\cdot \:2\cdot \:5=40


=√(10^2-40)


10^2=100


=√(100-40)


\mathrm{Subtract\:the\:numbers:}\:100-40=60


=√(60)


60\:\mathrm{divides\:by}\:2\quad \:60=30\cdot \:2


=2\cdot \:30


30\:\mathrm{divides\:by}\:2\quad \:30=15\cdot \:2


=2\cdot \:2\cdot \:15


15\:\mathrm{divides\:by}\:3\quad \:15=5\cdot \:3


=2\cdot \:2\cdot \:3\cdot \:5


2,\:3,\:5\mathrm{\:are\:all\:prime\:numbers,\:therefore\:no\:further\:factorization\:is\:possible}


=2\cdot \:2\cdot \:3\cdot \:5


=2^2\cdot \:3\cdot \:5


=√(2^2\cdot \:3\cdot \:5)

Apply Radical Rule:


=√(2^2)√(3\cdot \:5)

Apply Radical Rule:


√(2^2)=2


=2√(3\cdot \:5)


\mathrm{Refine}


=2√(15)


x_(1,\:2)=(-\left(-10\right)\pm \:2√(15))/(2\cdot \:2)


\mathrm{Separate\:the\:solutions}


x_1=(-\left(-10\right)+2√(15))/(2\cdot \:2),\:x_2=(-\left(-10\right)-2√(15))/(2\cdot \:2)


(-\left(-10\right)+2√(15))/(2\cdot \:2)

Apply Rule -(-a)=a


=(10+2√(15))/(2\cdot \:2)


\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2=4


=(10+2√(15))/(4)


=(2\left(5+√(15)\right))/(4)


\mathrm{Cancel\:the\:common\:factor:}\:2


=(5+√(15))/(2)


(-\left(-10\right)-2√(15))/(2\cdot \:2)


=(10-2√(15))/(2\cdot \:2)


\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2=4


=(10-2√(15))/(4)


=(2\left(5-√(15)\right))/(4)


\mathrm{Cancel\:the\:common\:factor:}\:2


=(5-√(15))/(2)


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=(5+√(15))/(2),\:x=(5-√(15))/(2)

User Esac
by
3.9k points