Answer:
The interval for which y is a decreasing function of x is:
![(0, 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nhrgy7eynmzkacyonmif8jtevn5ub7f9nz.png)
Or as an inequality:
![0<x<1](https://img.qammunity.org/2022/formulas/mathematics/college/ngj6m1d4fr8xpuuy5xitomh9abheirygsx.png)
Explanation:
We are given the equation:
![\displaystyle y=(e^x)/(x)\, ,x>0](https://img.qammunity.org/2022/formulas/mathematics/high-school/85z2xuf9tj1nwjkyuvj30pa2bn5kcwujrt.png)
And we want to find the range of values x for which y is a decreasing function of x.
y is decreasing whenever y' is negative. Find y' using the Quotient Rule:
![\displaystyle y'=((e^x)'(x)-e^x(x)')/((x)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7zef5g8xtv86glcw00r2tao2uhxmn2yctd.png)
Differentiate:
![\displaystyle y'=(xe^x-e^x)/(x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e07s756q02h5gynbbsucwyutmnx5pa9ezj.png)
y is decreasing whenever y' is negative. Thus:
![\displaystyle 0>(xe^x-e^x)/(x^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/88759ilhjvwsmwppf5y9n1chop4zgr5173.png)
Multiply both sides by x². This is always positive so we do not need to change the sign:
![xe^x-e^x<0](https://img.qammunity.org/2022/formulas/mathematics/high-school/84fg3q0xmrq0lxsvhwspfmqlffxqos613f.png)
Factor:
![e^x(x-1)<0](https://img.qammunity.org/2022/formulas/mathematics/high-school/xyy137n1w9i4j7q8ujkhmczdp9djm21q7h.png)
eˣ is always positive. So:
![x-1<0](https://img.qammunity.org/2022/formulas/mathematics/high-school/wh5g7eo0ybfxnldavhmfc90ova9h3rfky9.png)
Adding one to both sides produces:
![x<1](https://img.qammunity.org/2022/formulas/mathematics/college/t0447lygcv6t4rejyhs3z0hlkypy7p07p7.png)
Therefore, y is a decreasing function of x when x is less than one (and greater than 0).
In interval notation:
![(0, 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nhrgy7eynmzkacyonmif8jtevn5ub7f9nz.png)
Or as an inequality:
![0<x<1](https://img.qammunity.org/2022/formulas/mathematics/college/ngj6m1d4fr8xpuuy5xitomh9abheirygsx.png)