Answer:
Part A
x + y ≤ 460...(1)
2.5·x + 1.25·y ≥ 600...(2)
Part B
The number of bottles of water the student must sell ≥ 192 bottles of water
Explanation:
The given parameters are;
The selling price of each can of lemonade = $2.50
The selling price of each bottle of water = $1.25
The amount of money the club needs to raise = $600
The maximum number of cans and bottles the students can accept = 460
Part A
Let 'x' represent the number of cans of lemonade the students accept, and let 'y' represent the number of bottles the student accept, the system of inequalities that can be used to represent the situation can be presented as follows;
x + y ≤ 460...(1)
2.5·x + 1.25·y ≥ 600...(2)
Part B
The number of cans of lemonade the club sells, x = 144
The number of bottles of water the student must sell to cover the cost of costumes, 'y', is given from the second inequality as follows;
2.5 × 144 + 1.25·y ≥ 600
1.25·y ≥ 600 - 2.5 × 144 = 240
1.25·y ≥ 240
y ≥ 240/1.25 = 192
y ≥ 192
The number of bottles of water the student must sell = 192 bottles of water