191k views
5 votes
Which statement describes the sequence defined by a Subscript n Baseline = StartFraction n cubed minus n Over n squared + 5 n EndFraction?

User JBeas
by
4.2k points

1 Answer

2 votes

Answer:

The answer is " The sequence converges to infinity. "

Explanation:

Given:


\to a_n=(n^3-n)/(n^2+5n)


\lim_(n \to \infty) a_n= \lim_(n \to \infty) (n^3-n)/(n^2+5n)


= \lim_(n \to \infty) (n(n^2-1))/(n(n+5))\\\\= \lim_(n \to \infty) ((n^2-1))/((n+5))\\\\= \lim_(n \to \infty) (n(n-(1)/(n)))/(n(1+(5)/(n)))\\\\= \lim_(n \to \infty) ((n-(1)/(n)))/((1+(5)/(n)))\\\\

Denominator
= \lim_(n \to \infty) 1+(5)/(n)=1+\lim_(n\to \infty) (5)/(n)=1+0=1

Numerator
=\lim_(n\to \infty)n-(1)/(n)=\infty


\therefore\\\\\lim_(n\to \infty)a_n=(\infty)/(1) =\infty

User Korteee
by
4.1k points