Answer:
![17.67](https://img.qammunity.org/2022/formulas/mathematics/high-school/vxvpt01wsv1j16gysegiw5d92a2mjsaj6j.png)
Explanation:
Given
Sample of 12 measurements has a mean of 16.5 and
a sample of 15 measurements has a mean of 18.6
Take
be the mean and no of measurements
and
be the mean and no of measurements in second case
![\therefore \bar{x_1}=(\sum a_1)/(n_1)\\\\\Rightarrow \sum a_1=\bar{x_1}* n_1\\\\\Rightarrow \sum a_1=198\quad \ldots(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fgjsolhqwjjpcwsmu5ksbotc7elq61jonh.png)
Similarly,
![\therefore \bar{x_2}=(\sum a_2)/(n_2)\\\\\Rightarrow \sum a_2=\bar{x_2}* n_2\\\\\Rightarrow \sum a_2=279\quad \ldots(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6tts97xt0gfxs3bb44a3qewhhapdrra5l7.png)
Mean of 27 measurements
![\Rightarrow \bar{x_3}=(\sum a_1+\sum a_2)/(n_1+n_2)\\\\\Rightarrow \bar{x_3}=(198+279)/(12+15)\\\\\Rightarrow \bar{x_3}=(477)/(27)\\\\\Rightarrow \bar{x_3}=17.67](https://img.qammunity.org/2022/formulas/mathematics/high-school/9v2y11danuiccclj6vlaty6sjsmv6ghdoa.png)