139k views
1 vote
What is tan 0 when csc 0= 2/3

What is tan 0 when csc 0= 2/3-example-1

1 Answer

3 votes

Answer:


tan(\theta) = (√(11))/(11)

Explanation:

Cosecant:

The cosecant is one divided by the sine. Thus:


\csc{\theta} = (1)/(sin(\theta))

Tangent is sine divided by cosine, so we first find the sine, then the cosine, to find the tangent.

Sine and cosine:


sin(\theta) = \frac{1}{\csc{\theta}} = (1)/(2√(3)) * (√(3))/(√(3)) = (√(3))/(6)


\sin^(2){\theta} + \cos^(2){\theta} = 1


\cos^(2){\theta} = 1 - \sin^(2){\theta}


\cos^(2){\theta} = 1 - ((√(3))/(6))^2


\cos^(2){\theta} = 1 - (3)/(36)


\cos^(2){\theta} = (33)/(36)

First quadrant, so the cosine is positive. Then


\cos^(2){\theta} = \sqrt{(33)/(36)} = (√(33))/(6)

Tangent:

Sine divided by cosine. So


tan(\theta) = (sin(\theta))/(cos(\theta)) = ((√(3))/(6))/((√(33))/(6)) = (√(3))/(√(33)) = (√(3))/(√(3)√(11)) = (1)/(√(11)) * (√(11))/(√(11)) = (√(11))/(11)

The answer is:


tan(\theta) = (√(11))/(11)

User Teolinda
by
4.5k points