165k views
4 votes
The sides of a triangular plot are in the ratio 3 : 5 : 7 and its perimeter is 300 m. find its area​

User Bassirou
by
3.9k points

2 Answers

4 votes

Given :

  • The sides of a triangular plot are in the ratio 3 : 5 : 7 .
  • Its perimeter is 300 m.

To Find :

  • Its area.

Solution :

  • Let us assume the sides in metres be 3x, 5x and 7x .

Then, We know,


\qquad \sf \dashrightarrow \: 3x + 5x + 7x = 300 \: \: \: \: \: \: \: Perimeter_((Triangle))


\qquad \sf \dashrightarrow \: 15x = 300


\qquad \sf \dashrightarrow \: x = (300)/(15)


\qquad \bf\dashrightarrow \: x = 20

So, The sides of the triangle are :


\qquad \sf \dashrightarrow \: 3 * 20 \: m = \bf60 \: m


\qquad \sf \dashrightarrow \: 5 * 20 \: m = \bf 100 \: m


\qquad \sf \dashrightarrow \: 7 * 20 \: m = \bf140 \: m

Now, Using Heron's formula :

We have,


\qquad \sf \dashrightarrow \: s = ( {60 + 100 + 140}) \: m = 300 \: m


\qquad \sf \dashrightarrow \: s = \frac {60 + 100 + 140}2 \: m = 150 \: m

And the Area will be :


\qquad \sf \dashrightarrow \: √(150(150 - 60)(150 - 100)(150 - 140)) \: {m}^(2)


\qquad \sf \dashrightarrow \: √(150 * 90 * 50 * 10) \: \: {m}^(2)


\qquad \sf \dashrightarrow \: 1500 √(3) \: {m}^(2)

User Demario
by
4.1k points
9 votes

Answer:

2598m²

Explanation:

Figure :


\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\put(5,1){$\bf 3x $}\put(2.5, - .5){$\bf 7x $}\put(.5,1){$\bf 5x $}\put(4.5,4){$\bf not \: to \: scale \: $}\end{picture}

Here we are given that the ratio of sides of a triangular plot is 3:5:7 and its perimeter is 300m . We are interested in finding the area of the rectangle . Firstly , let us take the given ratio's HCF be x , then we may write the ratio as ,


\longrightarrow 3x : 5x : 7x

According to the question ,


\longrightarrow 3x + 5x + 7x = 300m \\


\longrightarrow 15x = 300m\\


\longrightarrow x =(300m)/(15)\\


\longrightarrow x = 20m

Therefore , the sides will be ,


\longrightarrow 3x = 3(20m) = \red{60m}\\


\longrightarrow 5x =5(20m)= \red{100m}\\


\longrightarrow 7x =7(20m)=\red{140m}

Now we may use Heron's Formula to find out the area of triangle as ,

Heron's Formula :-

  • If three sides of a ∆ is a , b , c then the area is given by
    √( s(s-a)(s-b)(s-c)) , where s is the semi perimeter .

Here ,


\longrightarrow s =(300m)/(2)=150m

Therefore ,


\longrightarrow Area =√( 150(150-60)(150-100)(150-140))m^2\\


\longrightarrow Area =√( 150 * 90 * 50 * 10)m^2\\


\longrightarrow Area = √( 50^2 * 30^2* 3)m^2\\


\longrightarrow Area = 50* 30 * 1.732 m^2\\


\longrightarrow\underline{\underline{ Area = 2598m^2}}

And we are done !

User Hosun
by
4.3k points