93.0k views
3 votes
Differentiate the function. y = (2x - 5)^2 (5 - x)?​

User Zvone
by
5.3k points

1 Answer

3 votes

Answer:


\displaystyle y' = -(2x - 5)(6x - 25)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Algebra I

  • Terms/Coefficients
  • Factoring

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify

y = (2x - 5)²(5 - x)

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:
    \displaystyle y' = (d)/(dx)[(2x - 5)^2](5 - x) + (2x - 5)^2(d)/(dx)[(5 - x)]
  2. Chain Rule [Basic Power Rule]:
    \displaystyle y' = [2(2x - 5)^(2 - 1) \cdot (d)/(dx)[2x]](5 - x) + (2x - 5)^2(d)/(dx)[(5 - x)]
  3. Simplify:
    \displaystyle y' = [2(2x - 5) \cdot (d)/(dx)[2x]](5 - x) + (2x - 5)^2(d)/(dx)[(5 - x)]
  4. Basic Power Rule:
    \displaystyle y' = [2(2x - 5) \cdot 1 \cdot 2x^(1 - 1)](5 - x) + (2x - 5)^2(1 \cdot -x^(1 - 1))]
  5. Simplify:
    \displaystyle y' = [2(2x - 5) \cdot 2](5 - x) + (2x - 5)^2(-1)
  6. Multiply:
    \displaystyle y' = 4(2x - 5)(5 - x) - (2x - 5)^2
  7. Factor:
    \displaystyle y' = (2x - 5)[4(5 - x) - (2x - 5)]
  8. [Distributive Property] Distribute 4:
    \displaystyle y' = (2x - 5)[20 - 4x - (2x - 5)]
  9. [Distributive Property] Distribute negative:
    \displaystyle y' = (2x - 5)[20 - 4x - 2x + 5]
  10. [Subtraction] Combine like terms (x):
    \displaystyle y' = (2x - 5)[20 - 6x + 5]
  11. [Addition] Combine like terms:
    \displaystyle y' = (2x - 5)(25 - 6x)
  12. Factor:
    \displaystyle y' = -(2x - 5)(6x - 25)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Demetra
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.