![\large{ \tt{❋ \: EXPLANATION}} :](https://img.qammunity.org/2022/formulas/mathematics/middle-school/70bfqou8ar593hjm6oygmwrp003xosruzw.png)
- The formula to find out the volume of a rectangular prism is V = l × b × h where V is the volume , l = length , b = breadth & h = height.
- We're provided the figure of trapezium in the second attachment. The formula to fInd out the area of trapezium is A =
where a and b are the opposite parallel sides and h be the height of a trapezium.
![\large{ \tt{❃ \: SOLUTION}} :](https://img.qammunity.org/2022/formulas/mathematics/high-school/z1srygmogug2ryjkhhq5hvpanbf9iwlj1s.png)
- In the first picture , we're provided - Length ( l ) =
cm , breadth ( b ) =
cm and height ( h ) =
cm. Now, plug these known values and them find out the volume of given rectangular prism.
![\large{ \tt{❁ \: VOLUME \: OF \: RECTANGULAR \: PRISM \: ( \: V \: ) = l * b * h}}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/r62l3po0mdajtdnstjgee724zm93ms6gh0.png)
![\large{ {⟶ \: (7)/(4) * (3)/(2) * (1)/(2) }}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/c398oi1riptu8n2rey2gwitzhaqzexmla2.png)
- To multiply one fraction by another , multiply the numerators for the numerator and multiply the denominator for its denominator and reduce the fraction obtained after multiplication into lowest term if possible.
![\large{ ⟶ (7 * 3 * 1)/(4 * 2 * 2) }](https://img.qammunity.org/2022/formulas/mathematics/middle-school/c1m44dc317n3ltim8fmrjx5jyxxt2ydxl1.png)
![\large{⟶ (21)/(16) \tt{ {cm}^(3) }}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/8d9snw4nhj7bxww1eq7ge1hojwu5vvbrob.png)
- Hence , the volume is
cubic centimetres.
--------------------------------
- In the second attachment , we're provided - 6ft and 7 ft are the opposite parallel sides and 3 ft is the height of the given trapezium.
![\large{ \tt{✺ \: AREA \: OF \: A \: TRAPEZIUM = (1)/(2) h(a + b)}}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/hnqvluci3mnhkirc8xpz21gp1w8cl2kf4p.png)
![\large{ ⟶ (1)/(2) * 3(6 + 7)}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/u5y2c4u9gty48xld3pmyjgzirt4lyzdjxf.png)
![\large{⟶ \: (1)/(2) * 3 * 13 }](https://img.qammunity.org/2022/formulas/mathematics/middle-school/yx9u5v0ofwjjbz5lixon40jchielg3u39e.png)
![\large{⟶ (39)/(2) \tt{cm}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/middle-school/o2u8tjqs0dxmbqk21uehl1jmjivi5gcdsz.png)
- Hence , The area of trapezium is
![\boxed{ (39)/(2) \tt{cm}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/middle-school/qqyn75q7ceqfoi2isb4nmcydbfw0xv1wbs.png)
And we're done ! ♪
![\large{ \# \: \mathfrak{StayInAndExplore \:☂ }}](https://img.qammunity.org/2022/formulas/mathematics/middle-school/otlw82mt48ppp5vreoip3btozco18ysh7o.png)
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁