Answer:
There is a sufficient evidence to support the that machine 1 has the greater variance.
Explanation:
The question with the complete details can be found online.
Start by stating the hypotheses.
The null hypothesis states that the variance of machine 1 is less than or equal to machine 2
So, we have:
![H_o: \sigma_1 ^2 \le \sigma_2 ^2](https://img.qammunity.org/2022/formulas/mathematics/college/e8te20mze0r07z7lnvophchcvv45k4w818.png)
The alternate hypothesis will then be:
![H_a: \sigma_1 ^2 > \sigma_2 ^2](https://img.qammunity.org/2022/formulas/mathematics/college/wv6vb5o1uq0y0afnbghb69g9tz83eq1h3k.png)
So, we have:
![n_1 = 22](https://img.qammunity.org/2022/formulas/mathematics/college/404e2w40qy3uyr9ic0cpg5edqbomd09hqc.png)
Calculate the mean of Machine 1 and 2
The mean is:
![\bar x =(\sum x)/(n)](https://img.qammunity.org/2022/formulas/mathematics/college/40w56qcmz5yy6cy4zlh5kp11v0o5j4x4hs.png)
For machine 1, we have:
![\bar x_1 =(2.95+3.45+3.5+.....+3.12)/(25)](https://img.qammunity.org/2022/formulas/mathematics/college/c0ivm3bup55r4cdh009uqgb8sjav9egwig.png)
![\bar x_1 =(83.21)/(25)](https://img.qammunity.org/2022/formulas/mathematics/college/d07wyz02igjil2378m21nwk55iy9l2qfqu.png)
![\bar x_1 =3.3284](https://img.qammunity.org/2022/formulas/mathematics/college/cv07a2yt46nboxxye744jrzgo8e9ubfmbm.png)
For machine 2, we have:
![\bar x_2 = (3.22 + 3.3 + 3.34 + ..... +3.33)/(22)](https://img.qammunity.org/2022/formulas/mathematics/college/uphgipstssgej3duinpewljy2acc9kls0o.png)
![\bar x_2 = (72.12)/(22)](https://img.qammunity.org/2022/formulas/mathematics/college/nbondjl6hr3a1tgd8ldikgzdd23u6xmytd.png)
![\bar x_2 = 3.2782](https://img.qammunity.org/2022/formulas/mathematics/college/ipltwggdn2mxaubrhao7zym4qmbkyc32kj.png)
Calculate the standard deviation of both machines
The standard deviation is:
![\sigma = \sqrt{(\sum(x - \bar x)^2)/(n-1)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ve8zxgu4srgazkyrog9r9fv6pzbmyib3sc.png)
For machine 1, we have:
![\sigma_1 = \sqrt{((2.95 - 3.3284)^2+(3.45 - 3.3284)^2+(3.5 - 3.3284)^2+.....+(3.12 - 3.3284)^2)/(25-1)}](https://img.qammunity.org/2022/formulas/mathematics/college/qw6ph5eepfbpcsch95057tq86hwg4yst0s.png)
![\sigma_1 = \sqrt{((2.95 - 3.3284)^2+(3.45 - 3.3284)^2+(3.5 - 3.3284)^2+.....+(3.12 - 3.3284)^2)/(24)}](https://img.qammunity.org/2022/formulas/mathematics/college/g6zma6tvhorl600bchq1lzuwgmaqnda6x9.png)
![\sigma_1 = 0.2211](https://img.qammunity.org/2022/formulas/mathematics/college/52mpunuz5hnnv862s00v1nx72n6q1qdc47.png)
For machine 2, we have:
![\sigma_2 = \sqrt{((3.22 - 3.2782)^2+(3.3 - 3.2782)^2+(3.44 - 3.2782)^2+.....+(3.33 - 3.2782)^2)/(22-1)}](https://img.qammunity.org/2022/formulas/mathematics/college/poxiff4h7f4woh9526in62j0b5uke12udi.png)
![\sigma_2 = \sqrt{((3.22 - 3.2782)^2+(3.3 - 3.2782)^2+(3.44 - 3.2782)^2+.....+(3.33 - 3.2782)^2)/(21)}](https://img.qammunity.org/2022/formulas/mathematics/college/z1bks52s0uir20l3vm3xen69hz5393nprh.png)
![\sigma_2 = 0.0768](https://img.qammunity.org/2022/formulas/mathematics/college/towkcbwtwy7gztf4s7sih6wofevt2op8dq.png)
Calculate the degrees of freedom
![df=n-1](https://img.qammunity.org/2022/formulas/mathematics/college/fmtaxsgm6s5btzynowjmhhm6xrd73sttdr.png)
For machine 1;
![df_1=25-1=24](https://img.qammunity.org/2022/formulas/mathematics/college/duelkng8ibewqofdg79c5yhgber9vxs3wd.png)
For machine 2
![df_2=22-1=21](https://img.qammunity.org/2022/formulas/mathematics/college/pkielop80fu6kn0sece52t5rn4eibxe8iy.png)
Calculate the test statistic (t)
![t = (Var_1)/(Var_2)](https://img.qammunity.org/2022/formulas/mathematics/college/gk5vx9bxkg2zv8unwj4k148b2v91g9p7sc.png)
Rewrite in terms of standard deviation
![t = (\sigma_1^2)/(\sigma_2^2)](https://img.qammunity.org/2022/formulas/mathematics/college/2z6br4nfmxkuvln6z8glr8vja1muhyn1j6.png)
![t = (0.2211^2)/(0.0768^2)](https://img.qammunity.org/2022/formulas/mathematics/college/sehe4ojoki1vb737aedx8ms50t9dq6kpnc.png)
![t = (0.04888521)/(0.00589824)](https://img.qammunity.org/2022/formulas/mathematics/college/69xhkzxi5f81m3rkuje2h3mfptgia1xycp.png)
![t = 8.2881](https://img.qammunity.org/2022/formulas/mathematics/college/ft25nk9m002ji8rt2coaxev2szsh816vwc.png)
Lastly, calculate the p value.
This is the value of P(t > 8.2881) between the degrees of freedom i.e. 21 and 24
From the f distribution table
![P(t > 8.2881) < 0.01](https://img.qammunity.org/2022/formulas/mathematics/college/o1kwr23ppak0ihrv6n8wy3es9nf9njviv5.png)
Hence, we reject the null hypothesis