Step-by-step explanation:
Given: a = -3v^2
By definition, the acceleration is the time derivative of velocity v:
![a = (dv)/(dt) = - 3 {v}^(2)](https://img.qammunity.org/2022/formulas/physics/college/ohh5yp988idtwtyvvx2uzif8l40v261fmj.png)
Re-arranging the expression above, we get
![\frac{dv}{ {v}^(2) } = - 3dt](https://img.qammunity.org/2022/formulas/physics/college/76zdvvizy6glmxr0soutwivxr71s0u4u4c.png)
Integrating this expression, we get
![\int \frac{dv}{ {v}^(2) } = \int {v}^( - 2)dv = - 3\int dt](https://img.qammunity.org/2022/formulas/physics/college/f9ujpkw56teus9sxzy2eprhbjeg0xhsrlk.png)
![- (1)/(v) = - 3t + k](https://img.qammunity.org/2022/formulas/physics/college/q4nqbzaxrxu9eemx3yu01zmvgumoye5jya.png)
Since v = 10 when t = 0, that gives us k = -1/10. The expression for v can then be written as
![- (1)/(v) = - 3t - (1)/(10) = - ( (30 + 1)/(10) )](https://img.qammunity.org/2022/formulas/physics/college/hsrg3rgthw1wcm138rfi6kd70w7e3cknen.png)
or
![v = (10)/(30t +1 )](https://img.qammunity.org/2022/formulas/physics/college/bwloihvz3e7xlhsabrxan5nt71w2jnqzm9.png)
We also know that
![v = (ds)/(dt)](https://img.qammunity.org/2022/formulas/physics/college/tg77vkyuhpeqsmt8mbxx60mifpjf14rznb.png)
or
![ds = vdt = (10 \: dt)/(30t + 1)](https://img.qammunity.org/2022/formulas/physics/college/2kxt6d3op9i8jwsc63tb90wdy4u3d7tyyl.png)
We can integrate this to get s:
![s = \int v \: dt = \int ( (10)/(30t + 1)) \: dt = 10 \int (dt)/(30t + 1)](https://img.qammunity.org/2022/formulas/physics/college/46454nl8f7nfwihfa9opxy2i1ooizhxi07.png)
Let u = 30t +1
du = 30dt
so
![\int (dt)/(30t + 1) = (1)/(30) \int (du)/(u) = (1)/(30)\ln |u| + k](https://img.qammunity.org/2022/formulas/physics/college/ab6avn5fs1ahg8xipeifqegc07pkbxor6a.png)
![= (1)/(30)\ln |30t + 1| + k](https://img.qammunity.org/2022/formulas/physics/college/597hch7f9bpwps4x2nra80d2e7qrgw0fg3.png)
So we can now write s as
![s = (1)/(3)\ln |30t + 1| + k](https://img.qammunity.org/2022/formulas/physics/college/ueymhztibc7zkycfnig0pgfu4b9t38td2x.png)
We know that when t = 0, s = 8 m, therefore k = 8 m.
![s = (1)/(3)\ln |30t + 1| + 8](https://img.qammunity.org/2022/formulas/physics/college/ysxn43hrl7w0kjmakxgeyji5bz77cmmekp.png)
Next, we need to find the position and velocity at t = 3 s. At t = 3 s,
![v = (10)/(30(3) +1 ) = (10)/(91)(m)/(s) = 0.11 \: (m)/(s)](https://img.qammunity.org/2022/formulas/physics/college/7wxermvlxpbpro1kef5nd5oz4yjb012plv.png)
![s = (1)/(3)\ln |30(3) + 1| + 8 = 9.5 \: m](https://img.qammunity.org/2022/formulas/physics/college/6exrise7intge4qmw2dkwoe0cuestuu7if.png)
Note: velocity approaches zero as t -->
![\infty](https://img.qammunity.org/2022/formulas/mathematics/high-school/ze90gd1gkwpm6wbbybe2r9urshbfcnkzuv.png)