55.7k views
0 votes
find the absolute maximum and the absolute minimum of the given function on the given interval f(x)=xe^x/2 on [-3,1]

User Downwitch
by
3.9k points

2 Answers

1 vote

Answer:

Explanation:


f(x)=xe^{(x)/(2) } \\f'(x)=x*(1)/(2) e^{(x)/(2) } +e^{(x)/(2) } =e^{(x)/(2) } ((x)/(2) +1)\\

f'(x)=0, gives x=-2

we find f(x) at x=-3,-2,1

f(-3)=-3e^(-3/2)ā‰ˆ-0.67

f(-2)=-2e^(-2/2)=-2e^{-1}=-2/eā‰ˆ-0.74

f(1)=1 e^(1/2)=āˆšeā‰ˆ1.65

User Jamie Barker
by
4.2k points
2 votes

Answer:

View the graph for a visual

Explanation:

find the absolute maximum and the absolute minimum of the given function on the given-example-1
User Fegoulart
by
4.1k points