Explanation:
1. Given: a = 4t + 4
We know that
![a = (dv)/(dt) \: \: or \: dv = adt](https://img.qammunity.org/2022/formulas/mathematics/college/v1fmwy9o5wjk51e18bs830aqsj2xkwmjyc.png)
By definition, the integral of a power function x^n is
![\int {x}^(n) dx = \frac{ {x}^(n + 1) }{n + 1} + k](https://img.qammunity.org/2022/formulas/mathematics/college/l8ync2g5ksxuzpakmtc1vqep66h757wrnk.png)
Integrating the acceleration a, we get
![v = \int adt = \int(4t + 4)dt = 2 {t}^(2) + 4t + k](https://img.qammunity.org/2022/formulas/mathematics/college/lkizlbfasx37lap97hf3jbunf9ajyn0ph8.png)
where k = constant of integration. We know that v = 10 when t = 0 so when we do the substitution, we get k = 10 therefore, the final expression for v is
![v = 2 {t}^(2) + 4t + 10](https://img.qammunity.org/2022/formulas/mathematics/college/acwvzwprzl4uf1dzl67fjob7a5cs4a29tm.png)
To find s, we need to integrate v. Knowing that
![v = (ds)/(dt) \: \: or \: s = \int v \: dt](https://img.qammunity.org/2022/formulas/mathematics/college/e4mq2hd0wv7jj1nvt3zpfnmfhbsskh3qn6.png)
![s = \int(2 {t}^(2) + 4t + 10)dt](https://img.qammunity.org/2022/formulas/mathematics/college/45hvyd5jdw69mql4ifc3vyrrxi8vm4r5rq.png)
![= (2)/(3) {t}^(3) + 2 {t}^(2) + 10t + k](https://img.qammunity.org/2022/formulas/mathematics/college/1cp8za9zgd0n6atw1ev9p31fvitphz7f1y.png)
where k once again is the constant of integration. We know that s = 2 when t = 0, which gives us k = 2. Therefore, the final expression for s is
![s = (2)/(3) {t}^(3) + 2 {t}^(2) + 10t + 2](https://img.qammunity.org/2022/formulas/mathematics/college/u4t13gkcx4sb4en0nswjjbcmo25kld4fr0.png)
2. The potential difference V between two boundaries a and b is given by
![V = (q)/(2\pi \epsilon_0 \epsilon_r) \int_(b)^(a) (dr)/(r)](https://img.qammunity.org/2022/formulas/mathematics/college/yy3pf8s5apyfuyg92wyq8kw5iolza4z4ws.png)
Note that the integral in the expression above can be rewritten and the integrated as
![\int_(b)^(a) (dr)/(r) =\int_(b)^(a) {r}^( - 1) dr = \ln |a| - \ln |b|](https://img.qammunity.org/2022/formulas/mathematics/college/dwt7n64xitidq3t0m1wwxg5v0zxxdw6k61.png)
so the potential difference V is then J
![V = (q)/(2\pi \epsilon_0 \epsilon_r) \int_(b)^(a) (dr)/(r)](https://img.qammunity.org/2022/formulas/mathematics/college/yy3pf8s5apyfuyg92wyq8kw5iolza4z4ws.png)
![= \frac{2 * {10}^( - 6) }{2\pi (8.85* {10}^( - 12)) (2.77)}( \ln |20| - \ln |10| )](https://img.qammunity.org/2022/formulas/mathematics/college/8162a0k9gfrb24mbogqo14d0pt547k3i4f.png)
![= 9000 \: V](https://img.qammunity.org/2022/formulas/mathematics/college/4ax9eps6s7cen6qri1iyhx0obwhpoib2t1.png)