151k views
2 votes
Given that f(x) = √(ax + 1) , with x ≥ -1/a and a > 0

and g(x) = (x+1)/x, with x ≠ 0.
if ( f~¹ • g~¹) (3) = -⅜ ,
find : a²+ 3a -3 !​

User Cmp
by
4.4k points

1 Answer

2 votes

Answer:


\displaystyle 7

Explanation:

first thing I assume by f~¹ you meant
f^(-1) however

we want to find +3x-3 for the given condition. with the composite function condition we can do so

Finding the inverse of f(x):


\displaystyle f(x) = √(ax + 1)

substitute y for f(x):


\displaystyle y= √(ax + 1)

interchange:


\displaystyle x= √(ay + 1)

square both sides:


\displaystyle ay + 1 = {x}^(2)

cancel 1 from both sides:


\displaystyle ay = {x}^(2) - 1

divide both sides by a:


\displaystyle y = \frac{{x}^(2) - 1 }{a}

substitute f^-1 for y:


\displaystyle f ^( - 1) (x) = \frac{{x}^(2) - 1 }{a}

finding the inverse of g(x):


\displaystyle g(x) = (x + 1)/(x)

substitute y for g(x)


\displaystyle y= (x + 1)/(x)

interchange:


\displaystyle (y + 1)/(y) =x

cross multiplication


\displaystyle y + 1= xy

cancel 1 from both sides


\displaystyle y - xy= - 1

factor out y:


\displaystyle y(1 - x)= - 1

divide both sides by 1-x:


\displaystyle y= - (1)/( 1 - x)

substitute g^-1 for y:


\displaystyle g ^( - 1) (x)= - (1)/( 1 - x)

remember that


\displaystyle (f \circ g)x = f(g(x))

therefore we obtain:


\rm \displaystyle (f ^( - 1) \circ g ^( - 1) ) (3) = \frac{{ \bigg(- (1)/(1 - 3) } \bigg)^(2) - 1 }{a}

since (f~¹•g~¹)(3)=-⅜ thus substitute:


\rm \displaystyle \frac{{ \bigg(- (1)/(1 - 3) } \bigg)^(2) - 1 }{a} = - (3)/(8)

simplify parentheses:


\rm \displaystyle \frac{{ \bigg( (1)/(2) } \bigg)^(2) - 1 }{a} = - (3)/(8)

simplify square:


\rm \displaystyle \frac{{ (1)/(4) } - 1 }{a} = - (3)/(8)

simplify substraction:


\rm \displaystyle ( - (3)/(4) )/( a)= - (3)/(8)

simplify complex fraction:


\rm \displaystyle - (3)/(4a) = - (3)/(8)

get rid of - sign:


\rm \displaystyle (3)/(4a) = (3)/(8)

divide both sides by 3:


\rm \displaystyle (1)/(4a) = (1)/(8)

cross multiplication:


\rm \displaystyle 4a= 8

divide both sides by 4:


\rm \displaystyle \boxed{ a= 2}

as we want to find +3a-3 substitute the got value of a:


\displaystyle {2}^(2) + 3.2 - 3

simplify square:


\displaystyle 4 + 3.2 - 3

simplify multiplication:


\displaystyle 4 +6 - 3

simplify addition:


\displaystyle 10 - 3

simplify substraction:


\displaystyle 7

and we are done!

User Synhershko
by
4.1k points