151k views
2 votes
Given that f(x) = √(ax + 1) , with x ≥ -1/a and a > 0

and g(x) = (x+1)/x, with x ≠ 0.
if ( f~¹ • g~¹) (3) = -⅜ ,
find : a²+ 3a -3 !​

User Cmp
by
8.1k points

1 Answer

2 votes

Answer:


\displaystyle 7

Explanation:

first thing I assume by f~¹ you meant
f^(-1) however

we want to find +3x-3 for the given condition. with the composite function condition we can do so

Finding the inverse of f(x):


\displaystyle f(x) = √(ax + 1)

substitute y for f(x):


\displaystyle y= √(ax + 1)

interchange:


\displaystyle x= √(ay + 1)

square both sides:


\displaystyle ay + 1 = {x}^(2)

cancel 1 from both sides:


\displaystyle ay = {x}^(2) - 1

divide both sides by a:


\displaystyle y = \frac{{x}^(2) - 1 }{a}

substitute f^-1 for y:


\displaystyle f ^( - 1) (x) = \frac{{x}^(2) - 1 }{a}

finding the inverse of g(x):


\displaystyle g(x) = (x + 1)/(x)

substitute y for g(x)


\displaystyle y= (x + 1)/(x)

interchange:


\displaystyle (y + 1)/(y) =x

cross multiplication


\displaystyle y + 1= xy

cancel 1 from both sides


\displaystyle y - xy= - 1

factor out y:


\displaystyle y(1 - x)= - 1

divide both sides by 1-x:


\displaystyle y= - (1)/( 1 - x)

substitute g^-1 for y:


\displaystyle g ^( - 1) (x)= - (1)/( 1 - x)

remember that


\displaystyle (f \circ g)x = f(g(x))

therefore we obtain:


\rm \displaystyle (f ^( - 1) \circ g ^( - 1) ) (3) = \frac{{ \bigg(- (1)/(1 - 3) } \bigg)^(2) - 1 }{a}

since (f~¹•g~¹)(3)=-⅜ thus substitute:


\rm \displaystyle \frac{{ \bigg(- (1)/(1 - 3) } \bigg)^(2) - 1 }{a} = - (3)/(8)

simplify parentheses:


\rm \displaystyle \frac{{ \bigg( (1)/(2) } \bigg)^(2) - 1 }{a} = - (3)/(8)

simplify square:


\rm \displaystyle \frac{{ (1)/(4) } - 1 }{a} = - (3)/(8)

simplify substraction:


\rm \displaystyle ( - (3)/(4) )/( a)= - (3)/(8)

simplify complex fraction:


\rm \displaystyle - (3)/(4a) = - (3)/(8)

get rid of - sign:


\rm \displaystyle (3)/(4a) = (3)/(8)

divide both sides by 3:


\rm \displaystyle (1)/(4a) = (1)/(8)

cross multiplication:


\rm \displaystyle 4a= 8

divide both sides by 4:


\rm \displaystyle \boxed{ a= 2}

as we want to find +3a-3 substitute the got value of a:


\displaystyle {2}^(2) + 3.2 - 3

simplify square:


\displaystyle 4 + 3.2 - 3

simplify multiplication:


\displaystyle 4 +6 - 3

simplify addition:


\displaystyle 10 - 3

simplify substraction:


\displaystyle 7

and we are done!

User Synhershko
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories