Answer:
The current in the second loop will stay constant
Step-by-step explanation:
Since the induced emf in the second coil, ε due to the changing current i₁ in the first wire loop ε = -Mdi₁/dt where M = mutual inductance of the coils and di₁/dt = rate of change of current in the first coil = + 1 A/s (positive since it is clockwise)
Now ε = i₂R where i₂ = current in second wire loop and R = resistance of second wire loop.
So, i₂R = -Mdi₁/dt
i₂ = -Mdi₁/dt/R
Since di₁/dt = + 1 A/s,
i₂ = -Mdi₁/dt/R
i₂ = -M × + 1 A/s/R
i₂ = -M/R
Since M and R are constant, this implies that i₂ = constant
So, the current in the second wire loop will stay constant.