46.0k views
3 votes
Victor draws one side of equilateral ∆PQR on the coordinate plane at points P (–9, –2) and Q (–2, –2). What are the two possible coordinates of vertex R? Round to the nearest tenth.

User Regof
by
5.6k points

1 Answer

4 votes

Answer:
(-5.5,4.062)\ \text{and}\ (-5.5,-8.062)

Explanation:

Given

The two vertices of a equilateral triangle are
(-9,-2)\ \text{and}\ (-2,-2)

Suppose the third vertex is
(x,y)

Side length in equilateral triangle are equal.


\Rightarrow √(\left( -2+9\right)^2+\left( -2+2\right)^2)=√(\left( x+9\right)^2+\left( y+2\right)^2)\\\text{squaring both sides}\\\\\Rightarrow 7^2=\left( x+9\right)^2+\left( y+2\right)^2\quad \ldots(i)\\\\

Similarly,


\Rightarrow √(\left( -2+9\right)^2+\left( -2+2\right)^2)=√(\left( x+2\right)^2+\left( y+2\right)^2)\\\\\Rightarrow 7^2=\left( x+2\right)^2+\left( y+2\right)^2\quad \ldots(ii)

Subtract (i) and (ii)


\Rightarrow \left( x+9\right)^2-\left(x+2\right)^2=7^2-7^2\\\\\Rightarrow (x+9+x+2)(x+9-x-2)=0\\\Rightarrow (2x+11)7=0\\\\\Rightarrow x=-(11)/(2)

Insert the value of
x in equation (ii)


\Rightarrow \left(-5.5+2\right)^2+\left(y+2\right)^2=7^2\\\\\Rightarrow \left(-5.5+2\right)^2+\left(y+2\right)^2-\left(-5.5+2\right)^2=7^2-\left(-5.5+2\right)^2\\\\\Rightarrow \left(y+2\right)^2=36.75\\\\\Rightarrow y=4.06217\dots ,\:y=-8.06217

So, two possible vertex are
(-5.5,4.062)\ \text{and}\ (-5.5,-8.062)

User Kedare
by
4.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.