10.1k views
0 votes
Solve using the quadratic formula
2x^2+x+67=0

1 Answer

5 votes

Answer:


\displaystyle x=(-1 \pm i√(535))/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Multiple Roots
  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    \displaystyle x=(-b \pm √(b^2-4ac))/(2a)

Algebra II

  • Imaginary Root i = √-1

Explanation:

Step 1: Define

Identify

2x² + x + 67 = 0

a = 2

b = 1

c = 67

Step 2: Solve for x

  1. Substitute in variables [Quadratic Formula]:
    \displaystyle x=(-1 \pm √(1^2-4(2)(67)))/(2(1))
  2. Multiply:
    \displaystyle x=(-1 \pm √(1^2-4(2)(67)))/(2)
  3. [√Radical] Evaluate exponents:
    \displaystyle x=(-1 \pm √(1-4(2)(67)))/(2)
  4. [√Radical] Multiply:
    \displaystyle x=(-1 \pm √(1-536))/(2)
  5. [√Radical] Subtract:
    \displaystyle x=(-1 \pm √(-535))/(2)
  6. [√Radical] Simplify:
    \displaystyle x=(-1 \pm i√(535))/(2)
User Bkkbrad
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories