Answer:
![(x-4)^2+(y+1)^2=29](https://img.qammunity.org/2022/formulas/mathematics/high-school/ccros0l8wz32m3wlb5os19s0fu7mwnyt6t.png)
Explanation:
We want to find a circle whose diameter has the endpoints (6, 4) and (2, -6).
Since this is the diameter, its midpoint will be the center of the circle. Find the midpoint:
![\displaystyle M=\left((6+2)/(2), \frac{4+(-6)}2}\right)=(4, -1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4sapffqk58t7cr7cd2gfn2nzma7l7jse25.png)
So, the center of our circle is (4, -1).
Next, to find the radius, we can find the length of the diameter and divide it by half.
Using the distance formula, find the length of the diameter:
![\begin{aligned} d&=√((x_2-x_1)^2+(y_2-y_1)^2)\\\\ &=√((2-6)^2+(-6-4)^2)\\\\&=√((4)^2+(-10)^2)\\\\&=√(116)\\\\&=2√(29)\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/12u68linotegi6sa41nbr4ce0e21q9g78b.png)
So, the radius will be:
![\displaystyle r=(1)/(2)d=(1)/(2)\left(2√(29)\right)=√(29)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wmrer01rph986myb19inzbe7n9bbs82kt6.png)
The equation for a circle is given by:
![\displaystyle (x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/bfhizpq1iuxiu3isgvrjjhhq0hjuzhpze0.png)
Substitute:
![(x-4)^2+(y+1)^2=29](https://img.qammunity.org/2022/formulas/mathematics/high-school/ccros0l8wz32m3wlb5os19s0fu7mwnyt6t.png)