18.5k views
5 votes
Find the value of x in the triangle shown below​

Find the value of x in the triangle shown below​-example-1
User FuePi
by
4.4k points

2 Answers

1 vote
The answer is A, square root of 27=5.196
User John Fiala
by
4.2k points
5 votes


\huge\bold{Given:}

Length of the perpendicular = 3

Length of the hypotenuse = 6


\huge\bold{To\:find:}

The value of ''
x".


\huge\bold{Solution:}


\longrightarrow{\purple{A.\:x\:=\:√27}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Using Pythagoras theorem, we have

( Perpendicular )² + ( Base )² = (Hypotenuse)²


\longrightarrow{\blue{}} ( 3 )² +
{x}^(2) = ( 6 )²


\longrightarrow{\blue{}} 9 +
{x}^(2) = 36


\longrightarrow{\blue{}}
{x}^(2) = 36 - 9


\longrightarrow{\blue{}}
{x}^(2) = 27


\longrightarrow{\blue{}}
x =
√(27)

Therefore, the length of the missing side
is
√(27).


\huge\bold{To\:verify :}


\longrightarrow{\green{}} ( 3 )² + ( √27 )² = ( 6 )²


\longrightarrow{\green{}} 9 + 27 = 36


\longrightarrow{\green{}} 36 = 36


\longrightarrow{\green{}} L. H. S. = R. H. S.

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}

Find the value of x in the triangle shown below​-example-1
User Geddon
by
4.3k points