Answer:
a. AB: 3 by 7
b. BA: N by N
c. A^TB: N by N
d. BC: 6 by 3
Explanation:
Given
![A =3\ by\ 6](https://img.qammunity.org/2022/formulas/mathematics/college/k482fu2ll6qt1qmct16q3koln6oo9sp45o.png)
![B =6\ by\ 7](https://img.qammunity.org/2022/formulas/mathematics/college/emmtigsgb2lk6tqj86rjag5efkelnotk8o.png)
![C =7\ by\ 3](https://img.qammunity.org/2022/formulas/mathematics/college/w43fiy9c1qne4nkhttep09ptibu5lx0mba.png)
Required
The dimension of the following matrices
As a general rule:
For A * B to be successful, the columns in a must equal the rows in B
Using this rule, we have:
![A_(m*n) * B_(n * p) = AB_(m*p)](https://img.qammunity.org/2022/formulas/mathematics/college/izsxlnhu4eah7x1xid0pqsg0s4rjcwybl0.png)
So:
![(a)\ AB](https://img.qammunity.org/2022/formulas/mathematics/college/dq8bugwdzz7par6a11ffinckwtiz2l29xv.png)
![A_(3*6) * B_(6*7) \to AB_(3 * 7)](https://img.qammunity.org/2022/formulas/mathematics/college/iaixz79ly1npp1dhd5okwqzuydtvhlv3ty.png)
![(b)\ BA](https://img.qammunity.org/2022/formulas/mathematics/college/ch346dmxwmvsgza40b5jpaluj5ya9jqu3e.png)
![B_(6*7) * A_(3*6) \to AB_(N * N)](https://img.qammunity.org/2022/formulas/mathematics/college/b9wx9553zwxtsdblmz3ex01xlp1ygpctoo.png)
The column numbers of B does not equal the row numbers of A.
Hence, BA does not exist
![(c)\ A^TB](https://img.qammunity.org/2022/formulas/mathematics/college/6uth0kdduu4l3n00g41s0m17hrkdkqbp9z.png)
implies that:
If
, then
![A^T = 6\ by\ 3](https://img.qammunity.org/2022/formulas/mathematics/college/3kcy3vs6mj14bxdztfzjty1xsffch4pjxj.png)
So:
![A^T_(6*3) * B_(6,7) \to A^TB_(N*N)](https://img.qammunity.org/2022/formulas/mathematics/college/671975bo6dpimwp61dfzufgz9xxbot8ggs.png)
The column numbers of A^T does not equal the row numbers of B.
Hence,
does not exist
![(d)\ BC](https://img.qammunity.org/2022/formulas/mathematics/college/yvolludqxsm6459dmw94r7mp1hslhlqs71.png)
![B_(6*7) * C_(7*3) \to BC_(6,3)](https://img.qammunity.org/2022/formulas/mathematics/college/ryg1n93sz8hhp2sopqsxyqkhwhh3mu6ah0.png)