41.0k views
5 votes

(1+siny)/(cos y)+(cos y)/(1+sin y)


(cot x)/(tanx+cot x)=cos^2x

csc^2θ·tan^2θ - 1 = tan^2θ

1 Answer

4 votes

Explanation:

a)


(1 + \sin y)/( \cos y) + ( \cos y)/(1 + \sin y) = (1 + 2 \sin y + \sin^(2) y + \cos ^(2) y)/( \cos y(1 + \sin y))


= (2 + 2 \sin y)/( \cos y (1+ \sin y)) = (2)/( \cos y) = 2 \sec y

b)


( \cot x)/( \tan x + \cot x) = ( \cos x)/( \sin x( ( \sin x)/( \cos x) + ( \cos x)/( \sin x) ))


= ( \cos x)/( ( \sin^(2) )/( \cos x) + \cos x ) = ( \cos x)/( ( \sin ^(2) x + \cos^(2) x)/( \cos x) )


= \cos ^(2) x

c) Note that cscx = 1/sinx so


\csc^(2) \theta \tan^(2) \theta - 1= (1)/( \cos^(2) \theta ) - 1


= (1 - \cos^(2) \theta )/( \cos \theta) = ( \sin^(2) \theta)/( \cos ^(2) \theta ) = \tan^(2) \theta

User Cjmconie
by
4.1k points