65.2k views
3 votes
The class average on a math test was an 82 with a standard deviation of 5. If the 

data is normally distributed, which statements are true?

1. A student scoring a 74  would have a z -score of -1.6.
2. About 68% of the students  scored below an 87.
3. A z-score of 2.6 would be a test 
score of 95.
4. About 16% of the class  scored a 77 or below.
45. About 25% of the class  scored above a 92.

1 Answer

6 votes

Answer:

Option 3 and 4.

Explanation:

The z score shows by how many standard deviations the raw score is above or below the mean. The z score is given by:


z=(x-\mu)/(\sigma) \\\\where\ x=raw\ score,\mu=mean, \ \sigma=standard\ deviation

Given that mean (μ) = 82, standard deviation (σ) = 5

1) For x = 74:


z=(x-\mu)/(\sigma) \\\\z=(74-82)/(5) =-1.6

Option 1 is incorrect

2) For x < 87


z=(x-\mu)/(\sigma) \\\\z=(87-82)/(5) =1

From the normal distribution table, P(x < 87) = P(z < 1) = 0.8413 = 84.13%

Option 2 is incorrect

3) For x = 95:


z=(x-\mu)/(\sigma) \\\\z=(95-82)/(5) =2.6

Option 3 is correct

4) For x < 77


z=(x-\mu)/(\sigma) \\\\z=(77-82)/(5) =-1

From the normal distribution table, P(x < 77) = P(z < -1) = 0.16 = 16%

Option 4 is correct

5) For x > 92


z=(x-\mu)/(\sigma) \\\\z=(92-82)/(5) =2

From the normal distribution table, P(x > 92) = P(z > 2) = 1 - P(z < -2) = 1 - 0.9772 = 0.0228 = 2.28%

Option 5 is incorrect

User Totally
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories