225k views
0 votes
The number of texts per day by students in a class is normally distributed with a 

mean of 130 texts and a standard deviation of 20 texts. Identify all true statements.

1. A little more than 2% of the  students text 
under 90 times per day.
2. About 50% of the students  text more than 130 times per  day.
3. About 15% of the students  send over 190  texts per day.
4. About 68% of the students  text between 100 and 130  times.
5. A student texting 130 times  per day would have a z score  of 1.
6. A student texting 160 times  falls between 1 and 2 standard deviations from the mean.

1 Answer

1 vote

Answer:

1, 2, 6

Explanation:

The z score shows by how many standard deviations the raw score is above or below the mean. The z score is given by:


z=(x-\mu)/(\sigma) \\\\where\ x=raw\ score,\mu=mean, \ \sigma=standard\ deviation

Given that mean (μ) = 130 texts, standard deviation (σ) = 20 texts

1) For x < 90:


z=(x-\mu)/(\sigma) \\\\z=(90-130)/(20) =-2

From the normal distribution table, P(x < 90) = P(z < -2) = 0.0228 = 2.28%

Option 1 is correct

2) For x > 130:


z=(x-\mu)/(\sigma) \\\\z=(130-130)/(20) =0

From the normal distribution table, P(x > 130) = P(z > 0) = 1 - P(z < 0) = 1 - 0.5 = 50%

Option 2 is correct

3) For x > 190:


z=(x-\mu)/(\sigma) \\\\z=(190-130)/(20) =3

From the normal distribution table, P(x > 3) = P(z > 3) = 1 - P(z < 3) = 1 - 0.9987 = 0.0013 = 0.13%

Option 3 is incorrect

4) For x < 130:


z=(x-\mu)/(\sigma) \\\\z=(130-130)/(20) =0

For x > 100:


z=(x-\mu)/(\sigma) \\\\z=(100-130)/(20) =-1.5

From the normal table, P(100 < x < 130) = P(-1.5 < z < 0) = P(z < 0) - P(z < 1.5) = 0.5 - 0.0668 = 0.9332 = 93.32%

Option 4 is incorrect

5) For x = 130:


z=(x-\mu)/(\sigma) \\\\z=(130-130)/(20) =0

Option 5 is incorrect

6) For x = 130:


z=(x-\mu)/(\sigma) \\\\z=(160-130)/(20) =1.5

Since 1.5 is between 1 and 2, option 6 is correct

User Shubham Patel
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories