51.1k views
3 votes
Find the length of the third side if necessary right in simplest radical form

Find the length of the third side if necessary right in simplest radical form-example-1
User Lech Birek
by
5.2k points

2 Answers

5 votes

Answer:


\large{ \tt{❃ \: SOLUTION}} :

  • The longest side , which is the opposite of side of right angle is the hypotenuse ( h ). There are two other sides, the perpendicular ( p ) and the base ( b ) .

  • In given right triangle , hypotenuse ( h ) =
    √(61) , perpendicular ( p ) = 5 & base ( b ) = ?


\large{ \tt{✻ \: USING \: PYTHAGOREAN\: THEOREM : }}


\large{ \tt{❁ {h}^(2) = {p}^(2) + {b}^(2) }}

  • Plug the values and simplify!


\large{ ↦( √(61) })^(2) = {5}^(2) + {b}^(2)


\large{↦ \: 61 = 25 + {b}^(2) }


\large{↦25 + {b}^(2) = 61 }


\large{↦ {b}^(2) = 61 - 25}


\large{↦ {b}^(2) = 36}


\large{↦ {b} = √(36) }


\large{↦ b = \sqrt{ \underline{3 * 3} * \underline{ 2 * 2} }}


\large{↦b = 3 * 2}


\large{ \boxed{ \boxed{ \bold{↦b = 6 \: units }}}}

  • Hence , the length of a third side is
    \boxed{ \tt{6 }} units .

✺ Never give up on something that you actually want !

۵Hope I helped! ツ

☼ Have a wonderful day / night ! ☃

# StayInAndExplore ! ☂

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Pizza Lord
by
5.5k points
5 votes

___________________________________

Problem:

  • Find the length of the third side if necessary right in simplest radical form.

Formula:


\quad\quad\quad\quad\boxed{\tt{ {c}^(2) = \sqrt{ {a}^(2) + {b}^(2) }}}

Remember:

  • a = perpendicular
  • b = base
  • c = hypotenuse

Given:


\quad\quad\quad\quad\tt{ a = 5 }


\quad\quad\quad\quad\tt{ b = ? }


\quad\quad\quad\quad\tt{ {c = √(61) }}

Solution:


\quad\quad\quad\quad\tt{ {( √(61)) }^(2) = \sqrt{ {(5)}^(2) + {b}^(2) }}


\quad\quad\quad\quad\tt{ {61}= \sqrt{ {25} + {b}^(2) }}


\quad\quad\quad\quad\tt{ 61 = \sqrt{ 25 + {b}}}

  • Let's convert the "b" like this.


\quad\quad\quad\quad\tt{ {b } = √(25 - 61 )}


\quad\quad\quad\quad\tt{ {b } = √(36 )}


\quad\quad\quad\quad\tt{ {b } = 6 }

So the final answer is:


\quad\quad\quad\quad \boxed {\boxed{\tt{ \color{magenta} {b } = 6\:units }}}

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

Find the length of the third side if necessary right in simplest radical form-example-1
User Goofball
by
5.1k points