21.1k views
4 votes
Find the missing side of this right triangle. Х 8 16 x = = [?] Enter the number that belongs in the green box. Enter​

Find the missing side of this right triangle. Х 8 16 x = = [?] Enter the number that-example-1

1 Answer

5 votes


\huge\bold{Given:}

Length of the perpendicular = 8

Length of the hypotenuse = 16


\huge\bold{To\:find:}

The length of the missing side ''
x".


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\longrightarrow{\purple{x\:=\:√192}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Using Pythagoras theorem, we have

(Perpendicular)² + (Base)² = (Hypotenuse)²


\longrightarrow{\blue{}} (8)² +
{x}^(2) = (16)²


\longrightarrow{\blue{}} 64 +
{x}^(2) = 256


\longrightarrow{\blue{}}
{x}^(2) = 256 - 64


\longrightarrow{\blue{}}
{x}^(2) = 192


\longrightarrow{\blue{}}
x =
√(192)

Therefore, the length of the missing side
x is
√(192).


\huge\bold{To\:verify :}


\longrightarrow{\green{}} (8)² + (√192)² = (16)²


\longrightarrow{\green{}} 64 + 192 = 256


\longrightarrow{\green{}} 256 = 256


\longrightarrow{\green{}} L.H.S. = R. H. S.

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}

User Yantrab
by
4.8k points