![\huge\bold{Given:}](https://img.qammunity.org/2022/formulas/mathematics/high-school/rbcffpft3x63zt8q54s6192biqvol38glm.png)
Length of the perpendicular = 8
Length of the hypotenuse = 16
![\huge\bold{To\:find:}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tp3t71n5eej9kzrnm1erni62kehm6rtyyd.png)
The length of the missing side ''
".
![\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab3cr96jhmwhpbs7gmbhd859hlno5qbu4k.png)
![\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/college/smsuei5aad1btuofe1gnk5qrknj5lf3aot.png)
Using Pythagoras theorem, we have
(Perpendicular)² + (Base)² = (Hypotenuse)²
(8)² +
= (16)²
64 +
= 256
= 256 - 64
= 192
=
![√(192)](https://img.qammunity.org/2022/formulas/mathematics/college/gyjbb5lb2qss14chys39rug4p8hybpdes0.png)
Therefore, the length of the missing side
is
.
![\huge\bold{To\:verify :}](https://img.qammunity.org/2022/formulas/mathematics/college/3vz0sqegs4iaopxtar7cxanmh9uehjhk8q.png)
(8)² + (√192)² = (16)²
64 + 192 = 256
256 = 256
L.H.S. = R. H. S.
Hence verified. ✔
![\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q7cs8gv30nl6q5c9unepipja5ofl77obbh.png)