Given:
Radius of small circle = 4 in.
Width of gray border = 2 in.
To find:
The area of the gray border.
Solution:
We have, radius of small circle:
![r=4\text{ in.}](https://img.qammunity.org/2022/formulas/mathematics/college/yq8t9rbdi91bus90b6x5vqjbxoegwhexrx.png)
The width of gray border is 2 in. So,t he radius of the larger circle is:
![R=4+2\text{ in.}](https://img.qammunity.org/2022/formulas/mathematics/college/4859zvnbdhvz9zg2ozklyhdqroth2r26u9.png)
![R=6\text{ in.}](https://img.qammunity.org/2022/formulas/mathematics/college/8narju8wvnbz2w13umvxfvo7ehi8sl9f24.png)
Now, area of gray border is the difference for area of larger circle and smaller circle.
![A=\pi R^2-\pi r^2](https://img.qammunity.org/2022/formulas/mathematics/college/e6e9awbfq4v93dhy33zhxh43f46f6p4d08.png)
![A=\pi (R^2-r^2)](https://img.qammunity.org/2022/formulas/mathematics/college/4bzo4a4q1f108l8eghy2q3vzixmet3oacl.png)
Substituting
in the above formula, we get
![A=\pi (6^2-4^2)](https://img.qammunity.org/2022/formulas/mathematics/college/ndrf9it7icwjvsttuw1vqsh9rwhm5s45ju.png)
![A=\pi (36-16)](https://img.qammunity.org/2022/formulas/mathematics/college/xlcdhx07v3bidbbqf3bo0yn1l0g5iwyttd.png)
![A=\pi (20)](https://img.qammunity.org/2022/formulas/mathematics/college/u6mmirkbrd3kvypne0b9ijqppf1u4llfsd.png)
![A=20\pi](https://img.qammunity.org/2022/formulas/mathematics/college/tlovrj0w0enpkaet1djvt22phjlpw2dmrk.png)
The area of the gray border is
square inches. Therefore, the correct option is D.