126k views
0 votes
Integrate the following
•(x+10)²​

2 Answers

2 votes

Answer:


\rm\displaystyle \frac{ {x}^(3) }{3} + 10 {x}^(2) + 100 x + \rm C

Explanation:

we would like to integrate the following integration:


\displaystyle \int (x + 10 {)}^(2) dx

to do so simplify the integrand by using algebraic identity which yields:


\displaystyle \int {x}^(2) + 20x + 100 dx

by sum integration we obtain:


\rm\displaystyle \int {x}^(2)dx + \int20x dx+ \int 100 dx

remember that,


\displaystyle \int cxdx = c \int xdx

so,we acquire:


\rm\displaystyle \int {x}^(2)dx + 20\int x dx+ \int 100 dx

use exponent integration rule which yields:


\rm\displaystyle \frac{ {x}^(3) }{3} + 20 \frac{ {x}^(2) }{2} + \int 100 dx

use constant integration rule which yields:


\rm\displaystyle \frac{ {x}^(3) }{3} + 20 \frac{ {x}^(2) }{2} + 100 x

simplify:


\rm\displaystyle \frac{ {x}^(3) }{3} + 10 {x}^(2) + 100 x

and we of course have to add the constant of integration:


\rm\displaystyle \frac{ {x}^(3) }{3} + 10 {x}^(2) + 100 x + \rm C

User HeXor
by
4.9k points
2 votes

Answer:


\displaystyle \int {(x + 10)^2} \, dx = ((x + 10)^3)/(3) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

U-Substitution

Explanation:

*Note:

The answer below me is correct, but there is a simpler method to obtain the answer.

Step 1: Define

Identify


\displaystyle \int {(x + 10)^2} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = x + 10
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = dx

Step 3: Integrate Pt. 2

  1. [Integral] U-Substitution:
    \displaystyle \int {(x + 10)^2} \, dx = \int {u^2} \, du
  2. [Integral] Reverse Power Rule:
    \displaystyle \int {(x + 10)^2} \, dx = (u^3)/(3) + C
  3. Back-Substitute:
    \displaystyle \int {(x + 10)^2} \, dx = ((x + 10)^3)/(3) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Teo Inke
by
5.1k points