121k views
5 votes
Evaluate the function f(x) at the given numbers (correct to six decimal places).

f(x) = x^2 − 4x
------------ divided by
x^2 − 16


x = 4.1, 4.05, 4.01, 4.001, 4.0001,
3.9, 3.95, 3.99, 3.999, 3.9999

1 Answer

4 votes

Answer:

The function
f(x) = (x^(2)-4\cdot x)/(x^(2)-16) has the following set of solutions:


f(4.1) = 0.506173,
f(4.05) = 0.503106,
f(4.01) = 0.500624,
f(4.001) = 0.500062,
f(4.0001) = 0.500006,
f(4.0001) = 0.500006


f(3.9) = 0.493671,
f(3.95) = 0.496855,
f(3.99) = 0.499374,
f(3.999) = 0.499937,
f(3.9999) = 0.499994

Explanation:

Let be
f(x) = (x^(2)-4\cdot x)/(x^(2)-16), we proceed to simplify the expression by Algebraic means:

1)
(x^(2)-4\cdot x)/(x^(2)-16) Given

2)
(x\cdot (x-4))/((x-4)\cdot (x+4)) Associative, commutative and distributive properties/
a^(2)-b^(2) = (a+b)\cdot (a - b)

3)
(x)/(x + 4) Commutative, associative and modulative properties/Existence of multiplicative inverse/Result

Now we evaluate the function for each value:


x = 4.1


f(4.1) = (4.1)/(4.1+4)


f(4.1) = 0.506173


x = 4.05


f(4.05) = (4.05)/(4.05 + 4)


f(4.05) = 0.503106


x = 4.01


f(4.01) = (4.01)/(4.01 + 4)


f(4.01) = 0.500624


x = 4.001


f(4.001) = (4.001)/(4.001+4)


f(4.001) = 0.500062


x = 4.0001


f(4.0001) = (4.0001)/(4.0001 + 4)


f(4.0001) = 0.500006


x = 3.9


f(3.9) = (3.9)/(3.9+4)


f(3.9) = 0.493671


x = 3.95


f(3.95) = (3.95)/(3.95+4)


f(3.95) = 0.496855


x = 3.99


f(3.99) = (3.99)/(3.99+4)


f(3.99) = 0.499374


x = 3.999


f(3.999) = (3.999)/(3.999 + 4)


f(3.999) = 0.499937


x = 3.9999


f(3.9999) = (3.9999)/(3.9999 + 4)


f(3.9999) = 0.499994

User Chris Bornhoft
by
4.6k points