Answer:
x = (2 + √3) , (2 - √3)
Explanation:
GIVEN :-
- A quadratic polynomial x² - 4x + 1
TO FIND :-
- Roots of the quadratic polynomial
GENERAL FORMULAE TO BE USED IN THIS QUESTION :-
Quadratic formulae -
For a polynomial ax² + bx + c , its roots are :-
![x = (-b + √(b^2 - 4ac) )/(2a) \; ; (-b - √(b^2 - 4ac) )/(2a)](https://img.qammunity.org/2022/formulas/mathematics/college/qnh62gfx36oc4ggkck9ar2nml0eqpc7u0y.png)
SOLUTION :-
Use the quadratic formulae to find the roots of the polynomial.
![=> x = (-(-4) + √((-4)^2 - 4 * 1 * 1c) )/(2 * 1) \; ; (-(-4) - √((-4)^2 - 4 * 1 * 1) )/(2 * 1)](https://img.qammunity.org/2022/formulas/mathematics/college/qfnxjjpee90arl2gsjb5ifdwbfd3q42nu2.png)
![= (4 + √(16 - 4) )/(2) \; ; (4- √(16 - 4))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/l6fjooy4wf1p2f7efpltkso0gd3s1l6be2.png)
![= (4 + √(12) )/(2) \; ; (4- √(12))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/zmhsc2bpasr4akjdms18oiwewwnlkvxbdj.png)
![= (4 + 2√(3) )/(2) \; ; (4- 2√(3))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/nxevm4f08wg1ebidire6hhmszdckb8q2vq.png)
![= (2(2 + √(3)))/(2) \; ; (2(2- √(3)))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/y9rrx52ag15eej2jywt3dhpf0i5mmwu5xi.png)
![= (2 + √(3) ) \; ; (2 - √(3) )](https://img.qammunity.org/2022/formulas/mathematics/college/jx1scgh255mbkyd0cqyezah577qxdjxvk2.png)