Answer:
![\displaystyle f'(x) = 3x^2 {e}^{ {x}^(3) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/78dd8n15fgpf0jvrdqzjzbdm5qqsgjtbcn.png)
Explanation:
we would like to figure out the first derivative of the following:
![\displaystyle f(x) = {e}^{x ^(3) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/lqrwg8fqc8gxbgxvh6fay3vld6czefclro.png)
to do so take derivative In both sides:
![\displaystyle f'(x) = (d)/(dx) {e}^{x ^(3) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/j01ww47frnp293m648puudzfvd2onbxels.png)
to differentiate the above we can consider composite function derivation given by
![\rm\displaystyle (d)/(dx) f(g(x)) = (d)/(dx) f'(g(x)) * (d)/(dx) g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gyvoe37quptqlmwmg3vyqao2heas2f9x7a.png)
let
g(x)=u
so we obtain:
![\displaystyle f'(x) = (d)/(dx) {e}^(u) * (d)/(dx) u](https://img.qammunity.org/2022/formulas/mathematics/high-school/fplzj5sdosl53apzrf7d02imshyt2d03nj.png)
substitute back:
![\displaystyle f'(x) = (d)/(dx) {e}^{ {x}^(3) } * (d)/(dx) {x}^(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/s2flopdrmp1fl5dv09sa527fc4u8enojdz.png)
by using derivation rule we acquire:
![\displaystyle f'(x) = 3x^2 {e}^{ {x}^(3) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/78dd8n15fgpf0jvrdqzjzbdm5qqsgjtbcn.png)
and we are done!