Answer:
Step-by-step explanation:
Answer:
![\mathbf{f_o =1.87 * 10^(11) \ Hz}](https://img.qammunity.org/2022/formulas/physics/college/2mnme3j13e3vnudf6bpzaij2go0mw0fj2f.png)
Step-by-step explanation:
The formula for calculating the elastic potential energy is:
![U_o = (1)/(2)kR_o^2](https://img.qammunity.org/2022/formulas/physics/college/baj8joirazlx8f58ttdmcjzb6wps24wvcy.png)
By rearrangement and using (K) as the subject;
![K = (2 U_o)/(R_o^2)](https://img.qammunity.org/2022/formulas/physics/college/4go36p8c84bxu24y6yfjieg8x2sny5c4fj.png)
![k = (2* 1.68 * 10^(-21))/((3.82* 10^(-10))^2)](https://img.qammunity.org/2022/formulas/physics/college/v2hemb53i8hvvg55tf5sfa8dbqmqwzjhr5.png)
k = 2.3 × 10⁻² N/m
Now; the formula used to calculate the frequency of the small oscillation is:
![f_o = (1)/(2 \pi)\sqrt{(k)/(m)}](https://img.qammunity.org/2022/formulas/physics/college/oyqjebri99g0jv77i0r6gtgvglilecm8ib.png)
where;
m = mass of each atom
assuming
m = 1.66 × 10⁻²⁶ kg
Then:
![f_o = (1)/(2 \pi)\sqrt{(2.3 * 10^(-2) N/m)/(1.66 * 10^(-26) \ kg)}](https://img.qammunity.org/2022/formulas/physics/college/awcv86g15yh6yayhp3xy9l24nrtbiu7cej.png)
![\mathbf{f_o =1.87 * 10^(11) \ Hz}](https://img.qammunity.org/2022/formulas/physics/college/2mnme3j13e3vnudf6bpzaij2go0mw0fj2f.png)