Given:
The equation is:
![√(x+7)+5=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/kobjlz0amnmj84kn0h7thh4k8ek8nz0qqt.png)
To find:
Whether
and
both are solutions or one/both of them extraneous solutions.
Solution:
We have,
![√(x+7)+5=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/kobjlz0amnmj84kn0h7thh4k8ek8nz0qqt.png)
Subtract 5 from both sides.
![√(x+7)=x-5](https://img.qammunity.org/2022/formulas/mathematics/high-school/b1x0yzuf9vaml40hhgx4q8j7fnv28cfxod.png)
Taking square on both sides, we get
![x+7=(x-5)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/wk71jg8ndn36nlnr75k8e5lrpkrijzyh6w.png)
![x+7=x^2-10x+25](https://img.qammunity.org/2022/formulas/mathematics/college/qpn4vihpgsiw38j4c8st01dxuq85h2k6id.png)
![0=x^2-10x+25-x-7](https://img.qammunity.org/2022/formulas/mathematics/high-school/owdlyq9pip78zetr6x0jmp48ol5lai3dat.png)
![0=x^2-11x+18](https://img.qammunity.org/2022/formulas/mathematics/high-school/nsgcf06ib7hycl3q3k04exavl08sf6bqdw.png)
Splitting the middle term, we get
![x^2-2x-9x+18=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/wiidxg3rd0w51zpaocamtq6zhzvrtthhqt.png)
![x(x-2)-9(x-2)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/h353g78235g29zimtbrqrep6qs93nybfyu.png)
![(x-2)(x-9)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ybv173hjc7hqkrinlsmi7hczekelccywmp.png)
![x=2,9](https://img.qammunity.org/2022/formulas/mathematics/high-school/u65epbvn3gr0gsld0mrc62j9yhi61y23cs.png)
Now, substitute
in the given equation.
![√(2+7)+5=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ac3djj13v4sy2o6btciuac3m0uqqh6rxyx.png)
![√(9)+5=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/8vfwmz2k24hvz0iirgcmm261f29ys64l29.png)
![3+5=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r5jgudmxakyd3frpuqszkvuikfkyfpsgyb.png)
![8=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/cjyka80p94v0oatvzko1g0pgrnnq3i8bv1.png)
This statement is false because
. So, 2 is an extraneous solution.
Substitute
in the given equation.
![√(9+7)+5=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/a6a4w2kwu1hc826rvaer4u5lugeq1c5yd4.png)
![√(16)+5=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/hfroqdsz77r4tfimyqdhhpn40a72rgo56i.png)
![4+5=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/f8i72gbzh80zwqyydgdq2eskbqrzm76xg0.png)
![9=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/hs0o75lfcdufwyvoofr7mjmk6fvh5kfiim.png)
This statement is true. So, 9 is a solution of given equation.
Therefore, 2 is an extraneous solution and 9 is a solution of given equation.