200k views
2 votes
Prove for any positive integer n, n^3 +11n is a multiple of 6

User Nneka
by
8.5k points

1 Answer

2 votes

There are probably other ways to approach this, but I'll focus on a proof by induction.

The base case is that n = 1. Plugging this into the expression gets us

n^3+11n = 1^3+11(1) = 1+11 = 12

which is a multiple of 6. So that takes care of the base case.

----------------------------------

Now for the inductive step, which is often a tricky thing to grasp if you're not used to it. I recommend keeping at practice to get better familiar with these types of proofs.

The idea is this: assume that k^3+11k is a multiple of 6 for some integer k > 1

Based on that assumption, we need to prove that (k+1)^3+11(k+1) is also a multiple of 6. Note how I've replaced every k with k+1. This is the next value up after k.

If we can show that the (k+1)th case works, based on the assumption, then we've effectively wrapped up the inductive proof. Think of it like a chain of dominoes. One knocks over the other to take care of every case (aka every positive integer n)

-----------------------------------

Let's do a bit of algebra to say

(k+1)^3+11(k+1)

(k^3+3k^2+3k+1) + 11(k+1)

k^3+3k^2+3k+1+11k+11

(k^3+11k) + (3k^2+3k+12)

(k^3+11k) + 3(k^2+k+4)

At this point, we have the k^3+11k as the first group while we have 3(k^2+k+4) as the second group. We already know that k^3+11k is a multiple of 6, so we don't need to worry about it. We just need to show that 3(k^2+k+4) is also a multiple of 6. This means we need to show k^2+k+4 is a multiple of 2, i.e. it's even.

------------------------------------

If k is even, then k = 2m for some integer m

That means k^2+k+4 = (2m)^2+(2m)+4 = 4m^2+2m+4 = 2(m^2+m+2)

We can see that if k is even, then k^2+k+4 is also even.

If k is odd, then k = 2m+1 and

k^2+k+4 = (2m+1)^2+(2m+1)+4 = 4m^2+4m+1+2m+1+4 = 2(2m^2+3m+3)

That shows k^2+k+4 is even when k is odd.

-------------------------------------

In short, the last section shows that k^2+k+4 is always even for any integer

That then points to 3(k^2+k+4) being a multiple of 6

Which then further points to (k^3+11k) + 3(k^2+k+4) being a multiple of 6

It's a lot of work, but we've shown that (k+1)^3+11(k+1) is a multiple of 6 based on the assumption that k^3+11k is a multiple of 6.

This concludes the inductive step and overall the proof is done by this point.

User Dherik
by
9.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories