34.2k views
5 votes
2
Use the Pythagorean Theorem (a + b² = c) to find the missing side length.

2 Use the Pythagorean Theorem (a + b² = c) to find the missing side length.-example-1
User Shinell
by
3.6k points

2 Answers

1 vote


\huge\bold{Given:}

Length of the base "b" = 17 yd.

Length of the perpendicular "a" = 13 yd.
\huge\bold{To\:find:}

The length of the missing side, hypotenuse ("c").


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\boxed{C.\:21.4\:yd}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Using Pythagoras theorem, we have


({perpendicular})^(2) + ({base})^(2) = ({hypotenuse})^(2) \\ \\⇢( {13 \: yd})^(2) + ( {17 \: yd})^(2) = {c}^(2) \\ \\⇢ {c}^(2) = 169 \: {yd}^(2) + 289 \: {yd}^(2) \\ \\⇢c = \sqrt{458 \: {yd}^(2) } \\ \\⇢c = 21.40 \: yd


\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:side\:


\huge\bold{To\:verify :}


( {13 \: yd})^(2) + ( {17 \: yd})^(2) = {21.4 \: {yd}^(2) }\\ \\ ⇝169 \: {yd}^(2) + 289 \: {yd}^(2) = 457.96 \: {yd}^(2) \\ \\⇝458 \: {yd}^(2) = \: 458\: {yd}^(2) \\\\⇝ L.H.S.=R. H. S

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}

User Slfan
by
2.9k points
3 votes

Answer:

21.4

Explanation:


a^(2) + b^(2) = c^(2) \\13^(2) + 17^(2) = c^(2) \\169+ 289 = \sqrt{c^(2) } \\√(458) = \sqrt{c^(2) } \\21.4 = c

User The Bic Pen
by
3.8k points