34.2k views
5 votes
2
Use the Pythagorean Theorem (a + b² = c) to find the missing side length.

2 Use the Pythagorean Theorem (a + b² = c) to find the missing side length.-example-1
User Shinell
by
8.3k points

2 Answers

1 vote


\huge\bold{Given:}

Length of the base "b" = 17 yd.

Length of the perpendicular "a" = 13 yd.
\huge\bold{To\:find:}

The length of the missing side, hypotenuse ("c").


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\boxed{C.\:21.4\:yd}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Using Pythagoras theorem, we have


({perpendicular})^(2) + ({base})^(2) = ({hypotenuse})^(2) \\ \\⇢( {13 \: yd})^(2) + ( {17 \: yd})^(2) = {c}^(2) \\ \\⇢ {c}^(2) = 169 \: {yd}^(2) + 289 \: {yd}^(2) \\ \\⇢c = \sqrt{458 \: {yd}^(2) } \\ \\⇢c = 21.40 \: yd


\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:side\:


\huge\bold{To\:verify :}


( {13 \: yd})^(2) + ( {17 \: yd})^(2) = {21.4 \: {yd}^(2) }\\ \\ ⇝169 \: {yd}^(2) + 289 \: {yd}^(2) = 457.96 \: {yd}^(2) \\ \\⇝458 \: {yd}^(2) = \: 458\: {yd}^(2) \\\\⇝ L.H.S.=R. H. S

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}

User Slfan
by
7.4k points
3 votes

Answer:

21.4

Explanation:


a^(2) + b^(2) = c^(2) \\13^(2) + 17^(2) = c^(2) \\169+ 289 = \sqrt{c^(2) } \\√(458) = \sqrt{c^(2) } \\21.4 = c

User The Bic Pen
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories