164k views
0 votes
Determine whether the series is convergent or divergent by expressing sn as a telescoping sum.

[infinity]
Σ 8/n^2-1
n=3

1 Answer

2 votes

Answer:

The sum converges at:
(10)/(3)

Explanation:

Given


\sum\limits^(\infty)_(n =2) (8)/(n^2 - 1)

Express the denominator as difference of two squares


\sum\limits^(\infty)_(n =2) (8)/((n - 1)(n+1))

Express 8 as 4 * 2


\sum\limits^(\infty)_(n =2) (4 * 2)/((n - 1)(n+1))

Rewrite as:


4 * \sum\limits^(\infty)_(n =2) (2)/((n - 1)(n+1))

Express 2 as 1 + 1 + 0


4 * \sum\limits^(\infty)_(n =2) (1+1+0)/((n - 1)(n+1))

Express 0 as n - n


4 * \sum\limits^(\infty)_(n =2) (1+1+n - n)/((n - 1)(n+1))

Rewrite as:


4 * \sum\limits^(\infty)_(n =2) ((n + 1)-(n - 1))/((n - 1)(n+1))

Split


4 * \sum\limits^(\infty)_(n =2) ((n + 1))/((n - 1)(n+1))-((n - 1))/((n - 1)(n+1))

Cancel out like terms


4 * \sum\limits^(\infty)_(n =2) (1)/((n - 1))-(1)/((n+1))

In the above statement, we have:


a_3 + a_5 = 4[((1)/(2) - (1)/(4)) + ((1)/(4) - (1)/(6))]


a_3 + a_5 = 4[((1)/(2) - (1)/(6))]

Add
a_7


a_3 + a_5 + a_7= 4[((1)/(2) - (1)/(6)) + ((1)/(7 - 1) - (1)/(7+1))]


a_3 + a_5 + a_7= 4[((1)/(2) - (1)/(6)) + ((1)/(6) - (1)/(8))]


a_3 + a_5 + a_7= 4[((1)/(2) - (1)/(8))]

Notice that the pattern follows:


a_3 + a_5 + a_7 + ...... + a_(k)= 4[((1)/(2) - (1)/(k+1))]

The above represent the odd sums (say S1)

For the even sums, we have:


4 * \sum\limits^(\infty)_(n =2) (1)/((n - 1))-(1)/((n+1))

In the above statement, we have:


a_4 + a_6 = 4[((1)/(3) - (1)/(5)) + ((1)/(5) - (1)/(7))]


a_4 + a_6 = 4[((1)/(3) - (1)/(7))]

Add
a_8 to both sides


a_4 + a_6 +a_8 = 4[((1)/(3) - (1)/(7)) + (1)/(7) - (1)/(9)]


a_4 + a_6 +a_8 = 4[(1)/(3) - (1)/(9)]

Notice that the pattern follows:


a_4 + a_6 + a_8 + ...... + a_(k)= 4[((1)/(3) - (1)/(k+1))]

The above represent the even sums (say S2)

The total sum (S) is:


S = S_1 + S_2


S =4[((1)/(2) - (1)/(k+1))] + 4[((1)/(3) - (1)/(k+1))]

Remove all k terms


S =4[((1)/(2)] + 4[((1)/(3)]

Open bracket


S =(4)/(2) + (4)/(3)


S =(12 + 8)/(6)


S =(20)/(6)


S =(10)/(3)

The sum converges at:
(10)/(3)

User Vulcan
by
4.1k points