Given:
In circle D,
.
To find:
The length of JG.
Solution:
We know that, if two central angles are congruent then the corresponding chords are congruent and their measures are equal.
We have,
![\angle EDH\cong \angle EDG](https://img.qammunity.org/2022/formulas/mathematics/college/a36edjwjdypoi54g5bckmu47fdantndimu.png)
It means chords EH and EG are congruent and their measures are equal.
![EH=EG](https://img.qammunity.org/2022/formulas/mathematics/college/ngtog169gkgqz0w2xk8gvn9rw7egwnfb50.png)
![9=EG](https://img.qammunity.org/2022/formulas/mathematics/college/74qem29bohpvru1sxh1m0lvpvt72bfr3u7.png)
Using segment addition property, we get
![EJ+JG=EG](https://img.qammunity.org/2022/formulas/mathematics/college/tbe8dt4ipp92j5x06mrs7jxoq7rt9isad7.png)
![4+JG=9](https://img.qammunity.org/2022/formulas/mathematics/college/lfaiwdlzby5r1c7l28xjek6froju7s3u88.png)
![JG=9-4](https://img.qammunity.org/2022/formulas/mathematics/college/8233iug7mk9d5rdg1kuin6oizzg3nh7rb6.png)
![JG=5](https://img.qammunity.org/2022/formulas/mathematics/college/797ajmayuzzuwv7qg6zjf46g7h1rh5epow.png)
Therefore, the length of JG is 5 units.